Cold Plasma Dispersion relation

Let us go back to a single particle and see how it behaves in a high frequency electric field. We will use the force equation and Maxwell's equations. The high frequency field will be that of a wave in the plasma.

The high frequency field is $\vec{E}(t)=\vec{E}_{0} e^{i o t}$. The frequency can be as high as the cyclotron frequency. The force law is
$\frac{d \overrightarrow{\mathrm{v}}}{\mathrm{dt}}=\frac{q}{m}\left(\vec{E}_{0} e^{i \omega t}+\overrightarrow{\mathrm{v}} \times \vec{B}\right)$. Let $\overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{v}}_{\mathrm{c}}+\overrightarrow{\mathrm{v}}_{\mathrm{E}} e^{i \omega t}$, where v_{C} does not depend on ω.
The force law gives us:
$\frac{d \overrightarrow{\mathrm{v}}_{\mathrm{c}}}{\mathrm{dt}}+i \omega \overrightarrow{\mathrm{v}}_{\mathrm{E}} e^{i \omega t}=\frac{q}{m}\left(\vec{E}_{0} e^{i \omega t}+\overrightarrow{\mathrm{v}}_{\mathrm{c}} \times \vec{B}+\overrightarrow{\mathrm{v}}_{\mathrm{E}} \times \vec{B} e^{i \omega t}\right)$. One set of terms has a ω in front of them all and an $e^{\text {iot }}$ dependance, the other does not; in fact we have 2 equations:
(I) $\frac{d \overrightarrow{\mathrm{v}}_{\mathrm{c}}}{\mathrm{dt}}+=\frac{q}{m}\left(\overrightarrow{\mathrm{v}}_{\mathrm{c}} \times \vec{B}\right)$

The first is the usual cyclotron motion
$i \omega \overrightarrow{\mathrm{v}}_{\mathrm{E}} \vec{e}^{i \omega t}=\frac{q}{m} \vec{E}_{0} e^{i \omega t}+\frac{q}{m} \overrightarrow{\mathrm{v}}_{\mathrm{E}} \times \vec{B} e^{i \omega t}$
equation, we know the answer(see appendix I) . The second may be rewritten as
(II) (i $\left.\omega+\frac{\mathrm{q}}{\mathrm{m}} \vec{B} \times\right)_{\mathrm{v}_{\mathrm{E}}}=\frac{q}{m} \vec{E}$. Now multiply equation II by the operator ($\mathrm{i} \omega-\frac{\mathrm{q}}{\mathrm{m}} \vec{B} \times$)
$\left(\left(\mathrm{i} \omega-\frac{\mathrm{q}}{\mathrm{m}} \vec{B} \times\right)\right)\left(\mathrm{i} \omega+\frac{\mathrm{q}}{\mathrm{m}} \vec{B} \times\right) \overrightarrow{\mathrm{v}}_{\mathrm{E}}=\frac{q}{m}\left(\mathrm{i} \omega-\frac{\mathrm{q}}{\mathrm{m}} \vec{B} \times\right) \vec{E}$.
Let us now see what the left hand side is

$$
\begin{aligned}
& \left(\left(\mathrm{i} \omega-\frac{\mathrm{q}}{\mathrm{~m}} \vec{B} \times\right)\right)\left(\mathrm{i} \omega+\frac{\mathrm{q}}{\mathrm{~m}} \vec{B} \times \overrightarrow{\mathrm{v}}_{\mathrm{E}}=-\omega^{2} \overrightarrow{\mathrm{v}}_{\mathrm{E}}-\frac{q^{2}}{m^{2}} \vec{B} \times\left(\vec{B} \times \overrightarrow{\mathrm{v}}_{\mathrm{E}}\right)\right. \\
& =-\omega^{2} \overrightarrow{\mathrm{v}}_{\mathrm{E}}-\frac{q^{2}}{m^{2}}\left(\vec{B} \cdot \overrightarrow{\mathrm{v}}_{\mathrm{E}}\right) \vec{B}+\frac{q^{2}}{m^{2}} B^{2} \overrightarrow{\mathrm{v}}_{\mathrm{E}}
\end{aligned}
$$

Equating both sides
$-\omega^{2} \overrightarrow{\mathrm{v}}_{\mathrm{E}}-\frac{q^{2}}{m^{2}}\left(\vec{B} \cdot \overrightarrow{\mathrm{v}}_{\mathrm{E}}\right) \vec{B}+\frac{q^{2}}{m^{2}} B^{2} \overrightarrow{\mathrm{v}}_{\mathrm{E}}=\frac{q}{m}\left(\mathrm{i} \omega-\frac{\mathrm{q}}{\mathrm{m}} \vec{B} \times\right) \vec{E} \quad$ This may be written as $\left(\omega_{c}^{2}-\omega^{2}\right) \vec{v}_{\mathrm{E}}-\frac{q^{2}}{m^{2}}\left(\vec{B} \cdot \vec{v}_{\mathrm{E}}\right) \vec{B}=\frac{q}{m}\left(\mathrm{i} \omega-\frac{\mathrm{q}}{\mathrm{m}} \vec{B} \times \vec{E} ; \frac{q^{2} B^{2}}{m^{2}}=\omega_{c}^{2}\right.$
The next step is to break the velocity into components perpendicular and parallel to the magnetic field. First for the parallel case. The parallel case $\vec{B} \cdot \vec{v}_{E \|}=B v_{E_{\|}}$
$\vec{v}_{E}=\vec{v}_{E| |}+\vec{v}_{E \perp}$
$\left(\omega_{c}^{2}-\omega^{2}\right) \vec{v}_{\text {E\| }}-\frac{q^{2} B^{2}}{m^{2}} \vec{v}_{\text {EII }}=\mathrm{i} \omega \frac{\mathrm{q}}{\mathrm{m}} \vec{E}_{\| \|}, \vec{B} \times \vec{E}$ is \perp to B
(III) $\overrightarrow{\mathrm{v}}_{\text {E\| }}=-\mathrm{i} \frac{\mathrm{q}}{\omega \mathrm{m}} \vec{E}_{\|}$The parallel component of v oscillates as if B was not there but the oscillation is out of phase by 90 degrees $\left(i=e^{\frac{i \pi}{2}}\right)$. For the perpendicular component
$\left(\omega_{c}^{2}-\omega^{2}\right) \overrightarrow{\mathrm{v}}_{\mathrm{E} \perp}=\frac{q}{m}\left(\mathrm{i} \omega-\vec{\omega}_{c} \times\right) \vec{E}_{\perp}, \vec{\omega}_{c}=\frac{q \vec{B}}{m}$
(IV) $\overrightarrow{\mathrm{v}}_{\mathrm{E} \perp}=\frac{q}{m} \frac{\left(\mathrm{i} \omega-\vec{\omega}_{c} \times\right) \vec{E}_{\perp}}{\left(\omega_{c}^{2}-\omega^{2}\right)}$ Note this has a resonance at the cyclotron
frequency. This is an operator equation of the form $\overrightarrow{\mathrm{v}}_{\perp}=\vec{A} \vec{E}_{\perp}$ where A is a complex operator, which could be a tensor.

