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Cold Plasma Dispersion relation

Let us go back to a single particle and see how it behaves in a  high 
frequency electric field.  We will use the force equation and 
Maxwell’s equations.  The high frequency field will be that of a wave 
in the plasma.

The high frequency field is  

E t( ) =


E0e

iω t .  The frequency can be as 

high as the cyclotron frequency.  The force law is 

 

dv
dt

=
q
m

E0e

iω t + v ×

B( ) .  Let  

v=vc +
vEe

iω t , where vc does not depend on ω. 

The force law gives us:

 

dvc
dt

+ iωvEe
iω t =

q
m

E0e

iω t + vc ×

B + vE ×


Beiω t( ) .  One set of terms has a ω in 

front of them all and an eiωt  dependance, the other does not; in fact 
we have 2 equations:

 

(I )   d
vc

dt
+ = q

m
vc ×

B( )

iω vEe
iωt = q

m

E0e

iωt + q
m
vE ×


Beiωt

  The first is the usual cyclotron motion 

equation, we know the answer( see appendix 2) .  The second may 
be re-written as

(2)   
 
(iω+ q

m

B×)vE =

q
m

E .  Now multiply equation II by the operator 

 
(iω - q

m

B×)

 
(iω - q

m

B×)⎛

⎝⎜
⎞
⎠⎟
(iω+ q

m

B×)vE =

q
m
(iω - q

m

B×)

E .  

 Let us now see what the left hand side is 

 

(iω - q
m

B×)⎛

⎝⎜
⎞
⎠⎟
(iω+ q

m

B×)vE = −ω 2vE −

q2

m2


B ×


B × vE( )

= −ω 2vE −
q2

m2


Bi
vE( ) B +

q2

m2 B
2vE
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Equating both sides

 
−ω 2vE −

q2

m2


Bi
vE( ) B +

q2

m2 B
2vE =

q
m
(iω - q

m

B×)

E    This may be written as

 
ω c

2 −ω 2( )vE −
q2

m2


Bi
vE( ) B =

q
m

(iω - q
m

B×)

E   ; q

2B2

m2 =ω c
2

The next step is to break the velocity into components 
perpendicular and parallel to the magnetic field.   First for the 
parallel case.  The parallel case 

 

B i
vE = BvE

 

vE = vE +
vE⊥

ω c
2 −ω 2( )vE −

q2B2

m2
vE  =iω q

m

E   ,  


B ×

E  is ⊥  to B

(3)  
 

vE  = -i q
ωm

E   The parallel component of  v oscillates as if B was 

not there but the oscillation is out of phase by 90 degrees ( i = e
iπ
2 ).  

For the perpendicular component

 
ω c

2 −ω 2( )vE⊥ =
q
m

(iω - ω c×)

E⊥   , ω c =

q

B
m

(4)  
 

vE⊥ =
q
m

(iω - ω c×)

E⊥

ω c
2 −ω 2( )    Note this has a resonance at the cyclotron 

frequency.  This is an operator equation of the form  
v⊥ =


A

E⊥  where 

A is a complex operator, which could be a tensor.
Now let us further break down the perpendicular velocity and 
electric field (which is that of the wave)  into two components each 
rotating around the magnetic field in opposite directions.  

 
v⊥ = vL + vR    


E⊥ =


EL +


ER .  Using (4) as a guide

(5)  
 


EL ≡

1
2

E⊥ +

(i ω c×)

E⊥

ω c( )
⎡

⎣
⎢

⎤

⎦
⎥  ; 

ER ≡

1
2

E⊥ −

(i ω c×)

E⊥

ω c( )
⎡

⎣
⎢

⎤

⎦
⎥  ; 

E⊥ =>


E⊥e

iω t . Let us now 

assume the magnetic field is constant and is in the z direction.

 


EL =

1
2
E⊥e

iω t r̂ + iE⊥e
iω tθ̂⎡⎣ ⎤⎦  ; 


ER =

1
2

E⊥e
iω t r̂ − iE⊥e

iω tθ̂⎡⎣ ⎤⎦⎡
⎣

⎤
⎦  ; 

B = B0 k̂

 
Re(

EL ) = 1

2
E⊥ cos ωt( ) r̂ + Re(i cos ωt( ) + i sin(ωt)( ))E⊥θ̂⎡⎣ ⎤⎦  = 1

2
E⊥ cos ωt( ) r̂ − 1

2
E⊥ sin(ωt)E⊥θ̂
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This is an electric field vector that rotates clockwise around the 
magnetic field.  This is the same direction that an ion will take so 
the EL field can resonate with the ion gyro motion.  
The ER field will resonant with the electrons as it will rotate in the 
counterclockwise direction.  If we re-write the electric field in the 
perpendicular direction for ion motion as:

 


E⊥ = Exî + Ey ĵ     


ωC =ωC k̂

for  EL   ,  EL =
1
2
Exî + Ey ĵ( ) + 1

2
ik̂ × Exî + Ey ĵ⎡⎣ ⎤⎦ =

1
2
Ex − iEy( ) × î + iĵ⎡⎣ ⎤⎦

 

the time dependence is still inside E in the above.
If we put the time dependence back Re î + iĵ⎡⎣ ⎤⎦e

iω t = cos ωt( ) î − sin ωt( ) ĵ  
which is a unit vector spinning in the L direction.  Now substitute 
the rotating vectors into equation (IV) first for EL then for ER.  

 

(iω - ω c×)

EL =

1
2

 (iω - ω c×)

E⊥ +

(i ω c×)

E⊥

ω c( )
⎡

⎣
⎢

⎤

⎦
⎥

= 1
2

{iω

E⊥ −


ω c ×


E⊥ −

ω ( ω c×)

E⊥

ω c( ) −
(i ω c×) ω c ×


E⊥( )

ω c( ) }

= 1
2
i (ω +ωC )


E⊥ +

i ω c ×

E⊥

ω c

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= i(ω +ωC )


EL   ( note 


E⊥ i

ω c = 0)

Then the operator equation (4) is

(6) 

 

vL =
qi
m

(ω +ω c )

EL

ω c
2 −ω 2( )  = qi

m


EL

(ω c −ω )

vR =
−qi
m


EL

(ω c +ω )

  

 This may be written as a tensor for the rotating electric field in the 
frame of the rotating particle

(7)    

 

v=
vL
vR
v

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

ν

E =

iq
m

1
ω c −ω

0 0

0 −1
ω c +ω

0

0 0 −1
ω

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

EL
ER
E

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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Note that in this rotating frame the mobility tensor is a diagonal.  
Now using the definitions for ER, EL etc in the notes we can 
transform back into the xyz system (see appendix A) to get:

(8)   
vx
vy
vz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=
q
m

iω
ω c
2 −ω 2

ω c

ω c
2 −ω 2 0

−ω c

ω c
2 −ω 2

iω
ω c
2 −ω 2 0

0 0 −
i
ω

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

Ex

Ey

Ez

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

What’s the next step?  From the particle velocity we can get 
currents.  W can put these into Maxwell’s equations and from this 
we can derive a dispersion relation is we assume wave solutions.  
Note there is only the velocity of single particles in the wave that we 
considered so the plasma must be cold.  
Consider waves of the form  e

i

k i
r −ω t( ) . This means that we have Fourier 

analyzed the solution t the wave equation.  (See the notes on Fourier 
analysis) 
	
 Here is the strategy.   We know the relationship between the 
velocity and electric field.  They are related by a tensor 

(9)   
v=

ν

E    The tensor is called the mobility tensor.   In the 

rotating frame 
!
!   is diagonal

(9Rot)   

 


ν

E = iq

m

1
ω c −ω

0 0

0 −1
ω c +ω

0

0 0 − 1
ω

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

In rectangular coordinates 
!
!  has more components and from (8)
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(9Rect)    

 


ν = q

m

iω
ω c

2 −ω 2
ω c

ω c
2 −ω 2 0

−ω c

ω c
2 −ω 2

iω
ω c

2 −ω 2 0

0 0 − i
ω

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

V and E are also related by Maxwell’s equations.  One of Maxwell’s 
equation has the current in it.  The current is related to the particle 
drift velocity.  (Here we will assume that the current is carried by 
the electrons to simplify the equations.  If you also include ion 
currents there are additional terms but the physics is the same!) 
Now we will two relations between the current and electric field and 
these can be used to find the dielectric tensor.

	
 Of paramount utility in this unravelling is the plasma 
conductivity σ.  It can be shown that if   σ -> infinity the magnetic 
field lines are frozen into the plasma.  If σ is not equal to infinity the 
plasma will dissipate heat like the wires in a toaster.  We will 
consider a plasma with σ finite.  The Maxwell equation we will use is

(10)      
 
 ∇×

B == µ0


j + µ0ε

∂

E
∂t

 

Next we will use Ohms’ law.  The first time you see Ohm’s law in 
high school it is written as
V=IR.   In microscopic form the Voltage , Current and Resistance are 
represented by

 

R→ ρ = 1
σ

V →

E    and I→


J

   Therefore   
 
I = V

R
→

J =σ


E

The current and electric field need not be in the same direction.  
Consider a high frequency field where ω is so large that the ions 
cannot respond.  During an oscillation the electrons can drift in the 
EXB direction and cause an oscillating current.  Thus a field in one 
direction can cause a current in another,  As  

v = 

ν

E , 

 


j = nα

α = i,e
∑ qα

vα =

σ

E .   


σ  is the conductivity tensor.
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jx
jy
jz

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=

σ xx σ xy σ xz

σ yx σ yy σ yz

σ zx σ zy σ zz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Ex

Ey

Ez

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

For example for jz = σ zzEz this component of the conductivity tensor 

mediates the current in the z direction cause by an electric field in 
the z direction, but a current in the z direction can be caused by 
fields in the other two directions as well.  In its most general sense 
Ohm’s law is therefore:

(11)   

J=

σ

E

Now using Fourier analysis we time variation of E is  

E =

E0
r( )e− iωt

Equation (10) becomes 
 
∇×

B = µ0


σ

E + ε0

∂

E
∂t

⎛
⎝⎜

⎞
⎠⎟

   and then

(12) 
 
∇×

B = µ0


σ − iωε0


1( ) i E

We can combine the terms on the right hand side 

(13)   ∇×

B = −iωµ0


ε i

E    where 

 


ε = ε0


1+ i


σ

ωε0

⎛
⎝⎜

⎞
⎠⎟
  and define a new term

(14) 
 

i

σ

ωε0
+

1

⎡

⎣
⎢

⎤

⎦
⎥ =

κ   

But this not so new because 
!
!    must be related to the mobility.  

This is because   
v =

ν

E   ;   


J =

σ

E   and by definition  


J = nqv  and  

Equating these to eliminate E  

(15) 
 

inq

ν

ωε0
+

1

⎡

⎣
⎢

⎤

⎦
⎥ =

κ   Here we must be careful and we have to use 

 


1 =

1 0 0
0 1 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  when doing the addition since you cab’t blithely add 

a number to a tensor.
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  also ω pe =
nq2

mε0
is the definition of the plasma frequency.

 


κ = inq


ν

ωε0
+

1

⎡

⎣
⎢

⎤

⎦
⎥ =

1+ inq

ωε0
q
m

iω
ω c

2 −ω 2
ω c

ω c
2 −ω 2 0

−ω c

ω c
2 −ω 2

iω
ω c

2 −ω 2 0

0 0 − i
ω

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(16)	
 	


 


κ =

1−
ω pe

2

ω 2
ce −ω

2

−iω cω pe
2

ω ω 2
ce −ω

2( )2
0

iω cω pe
2

ω ω 2
ce −ω

2( ) 1−
ω pe

2

ω 2
ce −ω

2 0

0 0 1−
ω pe

2

ω 2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Appendix A
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How do we go from rotating coordinates back to rectangular ones?
In the notes:

(A1) 
 


EL =

1
2
Ex − iEy( ) î + iĵ( )

What about the other component?

(A2) 
 


ER =

1
2

E⊥ −
i ω c ×


E⊥

ω c

⎛
⎝⎜

⎞
⎠⎟

,   substitute for E⊥ in this

 


ER =

1
2

Exî + Ey ĵ −
i ω c × Exî + Ey ĵ( )

ω c

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1
2

Exî + Ey ĵ −
iω ck̂ × Exî + Ey ĵ( )

ω c

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 


Er =

1
2

Exî + Ey ĵ −
iω c Ex ĵ − Eyî( )

ω c

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1
2
Ex î − iĵ⎡⎣ ⎤⎦ + Ey ĵ + iî⎡⎣ ⎤⎦( )

(A3) 
 


Er =

1
2
Ex + iEy( ) î − iĵ⎡⎣ ⎤⎦

Now with (A1) and (A3) we have to find Ex, Ey in terms of the left 
and right components.   The velocities have the same form as the 
fields

(A4)   

 

vL =
1
2
vx − ivy( ) î + iĵ⎡⎣ ⎤⎦

vR =
1
2
vx + ivy( ) î − iĵ⎡⎣ ⎤⎦

But 
 

vL =
iq
m

1
ω c −ω( )


EL

Therefore by substitution:

vx − ivy( ) = iqm
1

ω c −ω( )
1
2
Ex − iEy( )

(A5)  vy = − q
m

1
ω c −ω( ) Ex − iEy( )− ivx

Next use the definition of vr

 

vR = − iq
m

1
ω c +ω( )


ER
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and using the definitions again 
1
2
vx + ivy( ) = − iq

m
1

ω c +ω( )
1
2
Ex + iEy( )

ivy = − iq
m

1
ω c +ω( ) Ex + iEy( )− vx

vy = − q
m

1
ω c +ω( ) Ex + iEy( ) + ivx

   (A6)

Next equate the two (A5) and (A6)

− q
m

1
ω c +ω( ) Ex + iEy( ) + ivx = − q

m
1

ω c −ω( ) Ex − iEy( )− ivx

2ivx = − q
m

1
ω c −ω( ) Ex − iEy( ) + q

m
1

ω c +ω( ) Ex + iEy( )

2ivx =
q
m

− 1
ω c −ω( ) +

1
ω c +ω( )

⎡

⎣
⎢

⎤

⎦
⎥Ex + iEy

q
m

1
ω c +ω( ) +

1
ω c −ω( )

⎡

⎣
⎢

⎤

⎦
⎥

vx =
q
m

iω
ω c

2 −ω 2( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ex +

q
m

ω c

ω c
2 −ω 2( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ey

Do the same thing for the y component to get

vy =
q
m

−ω c

ω c
2 −ω 2( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ex +

q
m

iω
ω c

2 −ω 2( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ey

From before the z component was simple

 
v = vz = − iq

mω
Ez

We can put this into matrix form

vx
vy
vz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= q
m

iω
ω 2

c −ω
2( )

ω c

ω 2
c −ω

2( ) 0

−ω c

ω 2
c −ω

2( )
iω

ω 2
c −ω

2( ) 0

0 0 i
ω

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Ex

Ey

Ez

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟


