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Cold Plasma Dispersion relation

Let us go back to a single particle and see how it behaves in a high
frequency electric field. We will use the force equation and
Maxwell’s equations. The high frequency field will be that of a wave
in the plasma.

The high frequency field is E(t)= E,¢ . The frequency can be as

high as the cyclotron frequency. The force law is
dv_ ¢
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m

The force law gives us:
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front of them all and an ¢ dependance, the other does not; in fact
we have 2 equations:
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equation, we know the answer( see appendix I) . The second may be
re-written as
I Go+d BX)V, = 4 E. Now multiply equation II by the operator
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Let us now see what the left hand side is
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Equating both sides
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The next step is to break the velocity into components
perpendicular and parallel to the magnetic field. First for the
parallel case. The parallel case B+V, =Bv,
VE = VEH + VEJ_
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(1) vy, = -iwiEH The parallel component of v oscillates as if B was
m
not there but the oscillation is out of phase by 90 degrees (i=e?).

For the perpendicular component
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(V) v, = ( : 2) Note this has a resonance at the cyclotron
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frequency. This is an operator equation of the form v, = AE, where

A is a complex operator, which could be a tensor.

Now let us further break down the perpendicular velocity and
electric field (which is that of the wave) into two components each
rotating around the magnetic field in opposite directions.

Vv, =V, +v, E, =E,+E,. Using (IV) as a guide
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assume the magnetic field is constant and is in the z direction.
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E, = %[Elei“’tf +iE, ¢ 1 Ey = %[[Elei‘”’? —iE,e”8]|; B=Bik
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This is an electric field vector that rotates clockwise around the
magnetic field. This is the same direction that an ion will take so
the Ep field can resonate with the ion gyro motion.

The Er field will resonant with the electrons as it will rotate in the
counterclockwise direction. If we re-write the electric field in the
perpendicular direction for ion motion as:

E,=Ei+E,j ®.=wck

1 ~ A 1 A ~ A 1 . n A
forE, , E = E(EXI + E_\,])+ Elk X I:Exl + Ey]] = E(Ex - lEy) X [z + l]:l
the time dependence is still inside E in the above.
If we put the time dependence back Re[f +ij ]ei‘”’ = cos(wt)i —sin(or) ]

which is a unit vector spinning in the L direction. Now substitute
the rotating vectors into equation (IV) first for Er then for Er.
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Then the operator equation (IV) is
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This may be written as a tensor for the rotating electric field in the
frame of the rotating particle
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Note that in this rotating frame the mobility tensor is a diagonal.
Now using the definitions for Eg, EL etc in the notes we can
transform back into the xyz system (see appendix A) to get:
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Appendix A

How do we go from rotating coordinates back to rectangular ones?
In the notes:

(Al) E, = %(E —iE,)(i +1)

What about the other component?
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(A3) E = %(E +iE, )i -]

Now with (A1) and (A3) we have to find Ex, Ey in terms of the left
and right components. The velocities have the same form as the
fields
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Therefore by substitution:
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Next use the definition of vr
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and using the definitions again
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Next equate the two (A5) and (A6)
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Do the same thing for the y component to get
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From before the z component was simple
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