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Cold Plasma Dispersion relation

Let us go back to a single particle and see how it behaves in a  high 
frequency electric field.  We will use the force equation and 
Maxwell’s equations.  The high frequency field will be that of a wave 
in the plasma.

The high frequency field is  

E t( ) =


E0e

iω t .  The frequency can be as 

high as the cyclotron frequency.  The force law is 

 

dv
dt

=
q
m

E0e

iω t + v ×

B( ) .  Let  

v=vc +
vEe

iω t , where vc does not depend on ω. 

The force law gives us:

 

dvc
dt

+ iωvEe
iω t =

q
m

E0e

iω t + vc ×

B + vE ×


Beiω t( ) .  One set of terms has a ω in 

front of them all and an eiωt  dependance, the other does not; in fact 
we have 2 equations:

 

(I )   d
vc

dt
+ =

q
m
vc ×

B( )

iωvEe
iω t =

q
m

E0e

iω t +
q
m
vE ×


Beiω t

  The first is the usual cyclotron motion 

equation, we know the answer( see appendix I) .  The second may be 
re-written as

(II)   
 
(iω+ q

m

B×)vE =

q
m

E .  Now multiply equation II by the operator 

 
(iω - q

m

B×)

 
(iω - q

m

B×)⎛

⎝⎜
⎞
⎠⎟
(iω+ q

m

B×)vE =

q
m
(iω - q

m

B×)

E .  

 Let us now see what the left hand side is 

 

(iω - q
m

B×)⎛

⎝⎜
⎞
⎠⎟
(iω+ q

m

B×)vE = −ω 2vE −

q2

m2


B ×


B × vE( )

= −ω 2vE −
q2

m2


Bi
vE( ) B +

q2

m2 B
2vE
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Equating both sides

 
−ω 2vE −

q2

m2


Bi
vE( ) B +

q2

m2 B
2vE =

q
m
(iω - q

m

B×)

E    This may be written as

 
ω c

2 −ω 2( )vE −
q2

m2


Bi
vE( ) B =

q
m

(iω - q
m

B×)

E   ; q

2B2

m2 =ω c
2

The next step is to break the velocity into components 
perpendicular and parallel to the magnetic field.   First for the 
parallel case.  The parallel case 

 

B i
vE = BvE

 

vE = vE +
vE⊥

ω c
2 −ω 2( )vE −

q2B2

m2
vE  =iω q

m

E   ,  


B ×

E  is ⊥  to B

(III)  
 

vE  = -i q
ωm

E   The parallel component of  v oscillates as if B was 

not there but the oscillation is out of phase by 90 degrees ( i = e
iπ
2 ).  

For the perpendicular component

 
ω c

2 −ω 2( )vE⊥ =
q
m

(iω - ω c×)

E⊥   , ω c =

q

B
m

(IV)  
 

vE⊥ =
q
m

(iω - ω c×)

E⊥

ω c
2 −ω 2( )    Note this has a resonance at the cyclotron 

frequency.  This is an operator equation of the form  
v⊥ =


A

E⊥  where 

A is a complex operator, which could be a tensor.
Now let us further break down the perpendicular velocity and 
electric field (which is that of the wave)  into two components each 
rotating around the magnetic field in opposite directions.  

 
v⊥ = vL + vR    


E⊥ =


EL +


ER .  Using (IV) as a guide

(V)  
 


EL ≡

1
2

E⊥ +

(i ω c×)

E⊥

ω c( )
⎡

⎣
⎢

⎤

⎦
⎥  ; 

ER ≡

1
2

E⊥ −

(i ω c×)

E⊥

ω c( )
⎡

⎣
⎢

⎤

⎦
⎥  ; 

E⊥ =>


E⊥e

iω t . Let us now 

assume the magnetic field is constant and is in the z direction.

 


EL =

1
2
E⊥e

iω t r̂ + iE⊥e
iω tθ̂⎡⎣ ⎤⎦  ; 


ER =

1
2

E⊥e
iω t r̂ − iE⊥e

iω tθ̂⎡⎣ ⎤⎦⎡
⎣

⎤
⎦  ; 

B = B0 k̂

 
Re(

EL ) = 1

2
E⊥ cos ωt( ) r̂ + Re(i cos ωt( ) + i sin(ωt)( ))E⊥θ̂⎡⎣ ⎤⎦  = 1

2
E⊥ cos ωt( ) r̂ − 1

2
E⊥ sin(ωt)E⊥θ̂
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This is an electric field vector that rotates clockwise around the 
magnetic field.  This is the same direction that an ion will take so 
the EL field can resonate with the ion gyro motion.  
The ER field will resonant with the electrons as it will rotate in the 
counterclockwise direction.  If we re-write the electric field in the 
perpendicular direction for ion motion as:

 


E⊥ = Exî + Ey ĵ     


ωC =ωC k̂

for  EL   ,  EL =
1
2
Exî + Ey ĵ( ) + 1

2
ik̂ × Exî + Ey ĵ⎡⎣ ⎤⎦ =

1
2
Ex − iEy( ) × î + iĵ⎡⎣ ⎤⎦

 

the time dependence is still inside E in the above.
If we put the time dependence back Re î + iĵ⎡⎣ ⎤⎦e

iω t = cos ωt( ) î − sin ωt( ) ĵ  
which is a unit vector spinning in the L direction.  Now substitute 
the rotating vectors into equation (IV) first for EL then for ER.  

 

(iω - ω c×)

EL =

1
2

 (iω - ω c×)

E⊥ +

(i ω c×)

E⊥

ω c( )
⎡

⎣
⎢

⎤

⎦
⎥

= 1
2

{iω

E⊥ −


ω c ×


E⊥ −

ω ( ω c×)

E⊥

ω c( ) −
(i ω c×) ω c ×


E⊥( )

ω c( ) }

= 1
2
i (ω +ωC )


E⊥ +

i ω c ×

E⊥

ω c

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= i(ω +ωC )


EL   ( note 


E⊥ i

ω c = 0)

Then the operator equation (IV) is

(V) 

 

vL =
qi
m

(ω +ω c )

EL

ω c
2 −ω 2( )  = qi

m


EL

(ω c −ω )

vR =
−qi
m


EL

(ω c +ω )

  

 This may be written as a tensor for the rotating electric field in the 
frame of the rotating particle

(VI)    

 

v=
vL
vR
v

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

ν

E =

iq
m

1
ω c −ω

0 0

0 −1
ω c +ω

0

0 0 −1
ω

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

EL
ER
E

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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Note that in this rotating frame the mobility tensor is a diagonal.  
Now using the definitions for ER, EL etc in the notes we can 
transform back into the xyz system (see appendix A) to get:

(VII)   
vx
vy
vz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=
q
m

iω
ω c
2 −ω 2

ω c

ω c
2 −ω 2 0

−ω c

ω c
2 −ω 2

iω
ω c
2 −ω 2 0

0 0 −
i
ω

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

Ex

Ey

Ez

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

What’s the next step?  From the particle velocity we can get 
currents.  W can put these into Maxwell’s equations and from this 
we can derive a dispersion relation is we assume wave solutions.  
Note there is only the velocity of single particles in the wave that we 
considered so the plasma must be cold.  
Consider waves of the form  e

i

k i
r −ω t( ) . Of paramount concern is the 

plasma conductivity.  We saw that when   σ -> infinity the field lines 
are frozen into the plasma.  If σ in not equal to infinity the plasma 
will dissipate heat like a toaster.  We will consider a plasma with σ 

finite.  Since 
 
∇ ×

E == −

∂

B
∂t

 , ∇ ×

B == µ0


j + µ0ε

∂

E
∂t

 the current and electric 

field need not be in the same direction.  Consider a high frequency 
field where ω is so large that the ions cannot respond.  During an 
oscillation the electrons can drift in the EXB direction and cause an 
oscillating current.  Thus a field in one direction can cause a current 
in another,  As  

v = 

ν

E , 

 


j = nα

α = i,e
∑ qα

vα =

σ

E .   


σ  is the conductivity 

tensor.
jx
jy
jz

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=

σ xx σ xy σ xz

σ yx σ yy σ yz

σ zx σ zy σ zz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Ex

Ey

Ez

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

For example for jz = σ zzEz this component of the conductivity tensor 

mediates the current in the z direction cause by an electric field in 
the z direction, but a current in the z direction can be caused by 
fields in the other two directions as well.  Now we want a dispersion 
relation.
Also note that since:
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εL = 1−
Ω2

p

1− β+( ) 1+ β−( ) εR = 1−
Ω2

p

1+ β+( ) 1− β−( ) ,   εT =
εL + εR

2

Here θ is the angle that the wavenumber k makes with respect to the 
uniform background magnetic field, which we take to be in the z 
direction.  ωpe is the electron plasma frequency and 

β =
ω c

ω
 the ratio of the cyclotron to the wave frequency.  

Appendix A

How do we go from rotating coordinates back to rectangular ones?
In the notes:

(A1) 
 


EL =

1
2
Ex − iEy( ) î + iĵ( )

What about the other component?

(A2) 
 


ER =

1
2

E⊥ −
i ω c ×


E⊥

ω c

⎛
⎝⎜

⎞
⎠⎟

,   substitute for E⊥ in this

 


ER =

1
2

Exî + Ey ĵ −
i ω c × Exî + Ey ĵ( )

ω c

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1
2

Exî + Ey ĵ −
iω ck̂ × Exî + Ey ĵ( )

ω c

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 


Er =

1
2

Exî + Ey ĵ −
iω c Ex ĵ − Eyî( )

ω c

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1
2
Ex î − iĵ⎡⎣ ⎤⎦ + Ey ĵ + iî⎡⎣ ⎤⎦( )

(A3) 
 


Er =

1
2
Ex + iEy( ) î − iĵ⎡⎣ ⎤⎦

Now with (A1) and (A3) we have to find Ex, Ey in terms of the left 
and right components.   The velocities have the same form as the 
fields

(A4)   

 

vL =
1
2
vx − ivy( ) î + iĵ⎡⎣ ⎤⎦

vR =
1
2
vx + ivy( ) î − iĵ⎡⎣ ⎤⎦
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But 
 

vL =
iq
m

1
ω c −ω( )


EL

Therefore by substitution:

vx − ivy( ) = iqm
1

ω c −ω( )
1
2
Ex − iEy( )

(A5)  vy = − q
m

1
ω c −ω( ) Ex − iEy( )− ivx

Next use the definition of vr

 

vR = − iq
m

1
ω c +ω( )


ER

and using the definitions again 
1
2
vx + ivy( ) = − iq

m
1

ω c +ω( )
1
2
Ex + iEy( )

ivy = − iq
m

1
ω c +ω( ) Ex + iEy( )− vx

vy = − q
m

1
ω c +ω( ) Ex + iEy( ) + ivx

   (A6)

Next equate the two (A5) and (A6)

− q
m

1
ω c +ω( ) Ex + iEy( ) + ivx = − q

m
1

ω c −ω( ) Ex − iEy( )− ivx

2ivx = − q
m

1
ω c −ω( ) Ex − iEy( ) + q

m
1

ω c +ω( ) Ex + iEy( )

2ivx =
q
m

− 1
ω c −ω( ) +

1
ω c +ω( )

⎡

⎣
⎢

⎤

⎦
⎥Ex + iEy

q
m

1
ω c +ω( ) +

1
ω c −ω( )

⎡

⎣
⎢

⎤

⎦
⎥

vx =
q
m

iω
ω c

2 −ω 2( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ex +

q
m

ω c

ω c
2 −ω 2( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ey

Do the same thing for the y component to get

vy =
q
m

−ω c

ω c
2 −ω 2( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ex +

q
m

iω
ω c

2 −ω 2( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ey

From before the z component was simple
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v = vz = − iq

mω
Ez

We can put this into matrix form

vx
vy
vz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= q
m

iω
ω 2

c −ω
2( )

ω c

ω 2
c −ω

2( ) 0

−ω c

ω 2
c −ω

2( )
iω

ω 2
c −ω

2( ) 0

0 0 i
ω

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Ex

Ey

Ez

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟


