Cold Plasma Dispersion relation

Let us go back to a single particle and see how it behaves in a high frequency electric field. We will use the force equation and Maxwell's equations. The high frequency field will be that of a wave in the plasma.

The high frequency field is $\vec{E}(t)=\vec{E}_{0} e^{i o t}$. The frequency can be as high as the cyclotron frequency. The force law is $\frac{d \overrightarrow{\mathrm{v}}}{\mathrm{dt}}=\frac{q}{m}\left(\vec{E}_{0} e^{i \omega t}+\overrightarrow{\mathrm{v}} \times \vec{B}\right)$. Let $\overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{v}}_{\mathrm{c}}+\overrightarrow{\mathrm{v}}_{\mathrm{E}} e^{i \omega t}$, where v_{C} does not depend on ω. The force law gives us:
$\frac{d \overrightarrow{\mathrm{v}}_{\mathrm{c}}}{\mathrm{dt}}+i \omega \overrightarrow{\mathrm{v}}_{\mathrm{E}} e^{i \omega t}=\frac{q}{m}\left(\vec{E}_{0} e^{i \omega t}+\overrightarrow{\mathrm{v}}_{\mathrm{c}} \times \vec{B}+\overrightarrow{\mathrm{v}}_{\mathrm{E}} \times \vec{B} e^{i \omega t}\right)$. One set of terms has a ω in front of them all and an $e^{i o t}$ dependance, the other does not; in fact we have 2 equations:
(I) $\frac{d \overrightarrow{\mathrm{v}}_{\mathrm{c}}}{\mathrm{dt}}+=\frac{q}{m}\left(\overrightarrow{\mathrm{v}}_{\mathrm{c}} \times \vec{B}\right)$

The first is the usual cyclotron motion
$i \omega \overrightarrow{\mathrm{v}}_{\mathrm{E}} \mathrm{e}^{i \omega t}=\frac{q}{m} \vec{E}_{0} e^{i \omega t}+\frac{q}{m} \overrightarrow{\mathrm{v}}_{\mathrm{E}} \times \vec{B} e^{i \omega t}$
equation, we know the answer(see appendix I) . The second may be re-written as
(II) (i $\left.\omega+\frac{\mathrm{q}}{\mathrm{m}} \vec{B} \times\right)_{\mathrm{v}_{\mathrm{E}}}=\frac{q}{m} \vec{E}$. Now multiply equation II by the operator
(i $\omega-\frac{\mathrm{q}}{\mathrm{m}} \vec{B} \times$)
$\left(\left(\mathrm{i} \omega-\frac{\mathrm{q}}{\mathrm{m}} \vec{B} \times\right)\right)\left(\mathrm{i} \omega+\frac{\mathrm{q}}{\mathrm{m}} \vec{B} \times\right) \vec{v}_{\mathrm{E}}=\frac{q}{m}\left(\mathrm{i} \omega-\frac{\mathrm{q}}{\mathrm{m}} \vec{B} \times\right) \vec{E}$.
Let us now see what the left hand side is

$$
\begin{aligned}
& \left(\left(\mathrm{i} \omega-\frac{\mathrm{q}}{\mathrm{~m}} \vec{B} \times\right)\right)\left(\mathrm{i} \omega+\frac{\mathrm{q}}{\mathrm{~m}} \vec{B} \times\right) \overrightarrow{\mathrm{v}}_{\mathrm{E}}=-\omega^{2} \overrightarrow{\mathrm{v}}_{\mathrm{E}}-\frac{q^{2}}{m^{2}} \vec{B} \times\left(\vec{B} \times \overrightarrow{\mathrm{v}}_{\mathrm{E}}\right) \\
& =-\omega^{2} \overrightarrow{\mathrm{v}}_{\mathrm{E}}-\frac{q^{2}}{m^{2}}\left(\vec{B} \cdot \overrightarrow{\mathrm{v}}_{\mathrm{E}}\right) \vec{B}+\frac{q^{2}}{m^{2}} B^{2} \overrightarrow{\mathrm{v}}_{\mathrm{E}}
\end{aligned}
$$

Equating both sides
$-\omega^{2} \overrightarrow{\mathrm{v}}_{\mathrm{E}}-\frac{q^{2}}{m^{2}}\left(\vec{B} \cdot \overrightarrow{\mathrm{v}}_{\mathrm{E}}\right) \vec{B}+\frac{q^{2}}{m^{2}} B^{2} \overrightarrow{\mathrm{v}}_{\mathrm{E}}=\frac{q}{m}\left(\mathrm{i} \omega-\frac{\mathrm{q}}{\mathrm{m}} \vec{B} \times\right) \vec{E} \quad$ This may be written as
$\left(\omega_{c}^{2}-\omega^{2}\right) \overrightarrow{\mathrm{v}}_{\mathrm{E}}-\frac{q^{2}}{m^{2}}\left(\vec{B} \cdot \vec{v}_{\mathrm{E}}\right) \vec{B}=\frac{q}{m}\left(\mathrm{i} \omega-\frac{\mathrm{q}}{\mathrm{m}} \vec{B} \times\right) \vec{E} ; \frac{q^{2} B^{2}}{m^{2}}=\omega_{c}^{2}$
The next step is to break the velocity into components
perpendicular and parallel to the magnetic field. First for the parallel case. The parallel case $\vec{B} \cdot \overrightarrow{\mathrm{v}}_{E \|}=B \mathrm{v}_{\mathrm{E}_{\|}}$
$\vec{v}_{E}=\vec{v}_{E \|}+\vec{v}_{E \perp}$
$\left(\omega_{c}^{2}-\omega^{2}\right) \overrightarrow{\mathrm{v}}_{\mathrm{E} \|}-\frac{q^{2} B^{2}}{m^{2}} \overrightarrow{\mathrm{v}}_{\mathrm{EII}}=\mathrm{i} \omega \frac{\mathrm{q}}{\mathrm{m}} \vec{E}_{\| \|}, \vec{B} \times \vec{E}$ is \perp to B
(III) $\overrightarrow{\mathrm{v}}_{\mathrm{EI\mid}}=-\mathrm{i} \frac{\mathrm{q}}{\omega \mathrm{m}} \vec{E}_{\|}$The parallel component of voscillates as if B was not there but the oscillation is out of phase by 90 degrees $\left(i=e^{\frac{i \pi}{2}}\right)$.
For the perpendicular component
$\left(\omega_{c}^{2}-\omega^{2}\right) \overrightarrow{\mathrm{v}}_{\mathrm{E} \perp}=\frac{q}{m}\left(\mathrm{i} \omega-\vec{\omega}_{c} \times\right) \vec{E}_{\perp}, \vec{\omega}_{c}=\frac{q \vec{B}}{m}$
(IV) $\overrightarrow{\mathrm{v}}_{\mathrm{E} \perp}=\frac{q}{m} \frac{\left(\mathrm{i} \omega-\vec{\omega}_{c} \times\right) \vec{E}_{\perp}}{\left(\omega_{c}^{2}-\omega^{2}\right)} \quad$ Note this has a resonance at the cyclotron
frequency. This is an operator equation of the form $\vec{v}_{\perp}=\vec{A} \vec{E}_{\perp}$ where A is a complex operator, which could be a tensor.
Now let us further break down the perpendicular velocity and electric field (which is that of the wave) into two components each rotating around the magnetic field in opposite directions.
$\overrightarrow{\mathrm{v}}_{\perp}=\overrightarrow{\mathrm{v}}_{\mathrm{L}}+\overrightarrow{\mathrm{v}}_{\mathrm{R}} \quad \vec{E}_{\perp}=\vec{E}_{L}+\vec{E}_{R}$. Using (IV) as a guide
(V) $\vec{E}_{L} \equiv \frac{1}{2}\left[\vec{E}_{\perp}+\frac{\left(\mathrm{i} \vec{\omega}_{c} \times\right) \vec{E}_{\perp}}{\left(\omega_{c}\right)}\right] ; \vec{E}_{R} \equiv \frac{1}{2}\left[\vec{E}_{\perp}-\frac{\left(\mathrm{i} \overrightarrow{\mathrm{h}}_{c} \times\right) \vec{E}_{\perp}}{\left(\omega_{c}\right)}\right] ; \vec{E}_{\perp} \Rightarrow \vec{E}_{\perp} e^{i \omega t}$. Let us now
assume the magnetic field is constant and is in the z direction.
$\vec{E}_{L}=\frac{1}{2}\left[E_{\perp} e^{i \omega t} \hat{r}+i E_{\perp} e^{i \omega t} \hat{\theta}\right] ; \vec{E}_{R}=\frac{1}{2}\left[\left[E_{\perp} e^{i \omega t} \hat{r}-i E_{\perp} e^{i \omega t} \hat{\theta}\right]\right] ; \vec{B}=B_{0} \hat{k}$
$\operatorname{Re}\left(\vec{E}_{L}\right)=\frac{1}{2}\left[E_{\perp} \cos (\omega t) \hat{r}+\operatorname{Re}\left(i(\cos (\omega t)+i \sin (\omega t)) E_{\perp} \hat{\theta}\right]=\frac{1}{2} E_{\perp} \cos (\omega t) \hat{r}-\frac{1}{2} E_{\perp} \sin (\omega t) E_{\perp} \hat{\theta}\right.$

This is an electric field vector that rotates clockwise around the magnetic field. This is the same direction that an ion will take so the E_{L} field can resonate with the ion gyro motion.
The ER field will resonant with the electrons as it will rotate in the counterclockwise direction. If we re-write the electric field in the perpendicular direction for ion motion as:
$\vec{E}_{\perp}=E_{x} \hat{i}+E_{y} \hat{j} \quad \vec{\omega}_{\mathrm{C}}=\omega_{c} \hat{k}$
for $\mathrm{E}_{\mathrm{L}}, \mathrm{E}_{\mathrm{L}}=\frac{1}{2}\left(E_{x} \hat{i}+E_{y} \hat{j}\right)+\frac{1}{2} i \hat{k} \times\left[E_{x} \hat{i}+E_{y} \hat{j}\right]=\frac{1}{2}\left(E_{x}-i E_{y}\right) \times[\hat{i}+i \hat{j}]$
the time dependence is still inside E in the above.
If we put the time dependence back $\operatorname{Re}[\hat{i}+i \hat{j}] e^{i \omega t}=\cos (\omega t) \hat{i}-\sin (\omega t) \hat{j}$
which is a unit vector spinning in the L direction. Now substitute the rotating vectors into equation (IV) first for E_{L} then for E_{R}.

$$
\begin{aligned}
& \left(\mathrm{i} \omega-\vec{\omega}_{c} \times\right) \vec{E}_{L}=\frac{1}{2}\left(\mathrm{i} \omega-\vec{\omega}_{c} \times\right)\left[\vec{E}_{\perp}+\frac{\left(\mathrm{i} \vec{\omega}_{c} \times\right) \vec{E}_{\perp}}{\left(\omega_{c}\right)}\right] \\
& =\frac{1}{2}\left\{i \omega \vec{E}_{\perp}-\vec{\omega}_{c} \times \vec{E}_{\perp}-\frac{\omega\left(\vec{\omega}_{c} \times\right) \vec{E}_{\perp}}{\left(\omega_{c}\right)}-\frac{\left(\mathrm{i} \vec{\omega}_{c} \times\right)\left(\vec{\omega}_{c} \times \vec{E}_{\perp}\right)}{\left(\omega_{c}\right)}\right\} \\
& =\frac{1}{2} i\left\{\left(\omega+\omega_{c}\right)\left[\vec{E}_{\perp}+\frac{i \vec{\omega}_{c} \times \vec{E}_{\perp}}{\omega_{c}}\right]\right\}=i\left(\omega+\omega_{C}\right) \vec{E}_{L} \quad\left(\text { note } \vec{E}_{\perp} \bullet \vec{\omega}_{c}=0\right)
\end{aligned}
$$

Then the operator equation (IV) is
(V)

$$
\overrightarrow{\mathrm{v}}_{L}=\frac{q i}{m} \frac{\left(\omega+\omega_{c}\right) \vec{E}_{L}}{\left(\omega_{c}^{2}-\omega^{2}\right)}=\frac{q i}{m} \frac{\vec{E}_{L}}{\left(\omega_{c}-\omega\right)}
$$

$$
\overrightarrow{\mathrm{v}}_{R}=\frac{-q i}{m} \frac{\vec{E}_{L}}{\left(\omega_{c}+\omega\right)}
$$

This may be written as a tensor for the rotating electric field in the frame of the rotating particle

$$
\overrightarrow{\mathrm{v}}=\left[\begin{array}{c}
\mathrm{v}_{\mathrm{L}} \tag{VI}\\
\mathrm{v}_{\mathrm{R}} \\
\mathrm{v}_{\|}
\end{array}\right]=\vec{v} \vec{E}=\frac{i q}{m}\left[\begin{array}{ccc}
\frac{1}{\omega_{c}-\omega} & 0 & 0 \\
0 & \frac{-1}{\omega_{c}+\omega} & 0 \\
0 & 0 & \frac{-1}{\omega}
\end{array}\right]\left[\begin{array}{l}
\mathrm{E}_{\mathrm{L}} \\
\mathrm{E}_{\mathrm{R}} \\
\mathrm{E}_{\|}
\end{array}\right]
$$

