
Computers in Physics

Real‐Time Relativity
Walter Gekelman, James Maggs, and Lingyu Xu

Citation: Computers in Physics 5, 372 (1991); doi: 10.1063/1.4823000
View online: http://dx.doi.org/10.1063/1.4823000
View Table of Contents: http://scitation.aip.org/content/aip/journal/cip/5/4?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Infrared behavior of real-time quark dispersion relations in hot QCD
AIP Conf. Proc. 1444, 167 (2012); 10.1063/1.4715413

Feature classification and related response in a real‐time interactive music system
J. Acoust. Soc. Am. 87, S40 (1990); 10.1121/1.2028209

A real‐time phonetic synthesizer
J. Acoust. Soc. Am. 69, S83 (1981); 10.1121/1.386036

Real‐time reverberation generator
J. Acoust. Soc. Am. 57, S68 (1975); 10.1121/1.1995374

Real‐Time Analysis
J. Acoust. Soc. Am. 47, 69 (1970); 10.1121/1.1974675

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

128.97.43.34 On: Sat, 26 Sep 2015 20:48:35

http://scitation.aip.org/content/aip/journal/cip?ver=pdfcov
http://scitation.aip.org/search?value1=Walter+Gekelman&option1=author
http://scitation.aip.org/search?value1=James+Maggs&option1=author
http://scitation.aip.org/search?value1=Lingyu+Xu&option1=author
http://scitation.aip.org/content/aip/journal/cip?ver=pdfcov
http://dx.doi.org/10.1063/1.4823000
http://scitation.aip.org/content/aip/journal/cip/5/4?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4715413?ver=pdfcov
http://scitation.aip.org/content/asa/journal/jasa/87/S1/10.1121/1.2028209?ver=pdfcov
http://scitation.aip.org/content/asa/journal/jasa/69/S1/10.1121/1.386036?ver=pdfcov
http://scitation.aip.org/content/asa/journal/jasa/57/S1/10.1121/1.1995374?ver=pdfcov
http://scitation.aip.org/content/asa/journal/jasa/47/1A/10.1121/1.1974675?ver=pdfcov

Real-Time
Relativity
Walter Gekelman, James Maggs and Lingyu Xu

An interactive program provides the means of illustrating the effects
of high velocity on the appearance of a common object

his article describes a software package which
calculates and displays in real time the shape of
a cube moving at relativistic velocity in the
sunlit world. Examples of its output are
presented to illustrate the effects of high
velocity on the appearance of a common object.

The cube may be launched from any position and at any
angle relative to the observer, but the velocity, /3 = vic, is
assumed constant. The parameters used in the program
may be varied in real time using buttons and knobs. The
entire program is menu-driven, and one can choose to
view the cube as a Doppler-shifted object or to have each
face colored differently to keep track of the large
distortions which can occur. This article contains the
theory and computational method used to calculate and
display the resulting shape. The most important subrou
tines are contained in the appendix.

Introduction
In introductory courses on special relativity, students are
taught about Lorentz contraction and time dilation with
respect to two inertial frames in relative motion. Many
students come away with the impression that if an object
were moving toward them at an appreciable fraction of the
speed of light, it would appear contracted in its direction
of motion. It has been understood for many years that this
is not the case, and that the Lorentz contraction applies in
a world described by measurement with a lattice of clocks
and meter sticks. I The "observation" of an object in this
world rests on analysis of data tapes issued by detectors
and clocks within the lattice, long after the object is gone.
All parts of an object must be measured at the same time

Walter Gekelman is a Professor of Physics at UCLA. He is an
experimental Plasma Physicist who specializes in basic research on waves
and instabilities. He is interested in finding new ways of conveying
complex information to students and colleagues. James Maggs is a
Research Scientist at UCLA who specializes in Plasma Physics theory. He
has worked on auroral and ionospheric physics and interpretation of
satellite data. Lingyu Xu is head of computing for the UCLA Physics De
partment. His areas of expertise include graphics, networking, systems
programming and data acquisition systems.

372 COMPUTERS IN PHYSICS, JUL/AUG 1991

in order to observe the phenomenon of Lorentz contrac
tion. The difference between a human observer, or a
camera, and this type of measurement is that a light
sensor, at any given instant of time, detects light which
may have originated from the object at very different
times. This effect was recognized by several authors2,3,4

over thirty years ago, and several calculations were done
to find the shape of simple objects moving at relativistic
speeds, as seen by Ii human observer.

For several reasons, little of this work has filtered
down to the classroom. Students generally have such a
difficult time with the concepts of relativity that many
instructors feel additional information may lead to an
irreversible overload. Also, there has been very little
available in visualization tools to dramatically illustrate
relativistic effects. A large part of the difficulty that
students have with physics is an inability to form a picture
which captures the essence of the subject apart from the
mathematics in which it is couched. If the problem
involves three- (or more) dimensional forms changing in
space and time, ordinary blackboard diagrams become
nearly useless.

Fortunately, the introduction of powerful graphics
workstations is changing this picture. This article de
scribes, in detail, an interactive program which runs and
renders, in real time, a cube moving at constant relativistic
speeds in any direction with respect to an observer. The
code can be straightforwardly modified to deal with any
shape or any velocity trajectory. The article is organized
as follows. First, we describe the problem in more detail
and review some of the ways others have tackled it. Then
we present our algorithm for solving it, before proceeding
with a description of the program and its user interface
and a presentation of several examples of the output.
Finally, we list the most important parts of the code.

Tbe Visual Appearance of an Object
Moving at Relativistic Velocities
Consider the emission of light from a simple object,
namely a cube, moving rapidly toward an observer in the
absence of gravitational fields. As shown in Fig. 1, a

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

128.97.43.34 On: Sat, 26 Sep 2015 20:48:35

spherical wave emitted, with the cube at rest, from a point
P on the rear surface, is blocked by the back of the cube
and is therefore not visible to the observer at point X. Dif
fractive effects are not considered here. Light rays are
normal to the spherical surface and cannot bend around
comers. In contrast, when the cube moves rapidly toward
the observer at velocity v along x, it can outrace most of
the expanding light sphere, and the ray emitted from the

'.7 , ...

Fig. 1: Illustration of how light emitted from the rear of a rapidly-moving
cube can reach an observer. (a) Light emitted from a point on the back of
a stationary cube is blocked by the cube. The hemispherical blue surface
represents a light pulse emitted from the rear ofthe cube. (b) A rapidly
moving cube emits a light pulse at the same time and pusition as the sta
tionary cube in (a), but the cube races to the right so that light from the
expanding spherical wavefront is no longer blocked and can arrive at the
observer.

point P on the rear face can get to the observer's eye. The
angle of elevation, '1', at which this happens is given
simply by 'I' p = cos - 1 (vic). 5 It is, therefore, possible to
see the rear side of a cube approaching at relativistic speed
from a viewing angle from which this would not be
possible if the cube were at rest!

If the cube is far enough away so that every point on
it subtends approximately the same angle 'I' with respect
to the observer, the cube will appear to be rotated as a sol
id object.2 The cube appears to rotate as a solid object be
cause it is Lorentz contracted. If it were not Lorentz
contracted, it would appear to be elongated along its
direction of motion. The relationship between the angle of
observation, '1', and the angle of apparent rotation, cp, is
given by5:

cos 'I' - {3
cp = arccos { } - 'I'

1 - {3 cos 'I'
(1)

When 'I' = 0°, the object moves directly toward the
observer and the rear face is never observed (i.e.
'I' + cp = 0). When 'I' increases for a fixed large {3,

120
p = 0.99

100 cos 1jI - p
cp = arccos { 1 _ P cos 1jI)-1jI

a
80 t

I
a cp
n

d 60
e
9
r
e

p = 0.05

100 120 140 160 180

'I' elevation angle (degrees)

Fig. 2: Graph of Eq. (1), the apparent rotation of a small cube as a func
tion of elevation angle and 13. For 13 > 0.95 and a range of elevation an
gles, the cube can rotate more than 90" so that an observer will see the
rear face.

({3 = vic), the rear face of the cube comes into view at the
angle of elevation 'I' p (i.e. 'I' p + cp = 1T12). In the limiting
case as {3 -+ 1, the cube appears to rotate so that only the
rear face is visible from any observation angle (i.e.
'I' + cp = 1T). If one plots the angle of apparent rotation of
the cube as a function of the angle of observation5

, as
shown in Fig. 2, another interesting phenomenon emerges.
For large {3 ({3 > .95) and a certain range of observation
angles ('I' « 90°), the cube can appear to rotate more than
90°. In these cases, the bottom face of the cube appears to
swap places with the front face, and the rear face with the
bottom face, as illustrated in Fig. 3. For small{3 (0.5), the
object rotates slightly (¢J = 18°). As {3 approaches unity,
the cube can rotate more than 90° so that the rear is visible
to the observer.

The simple analysis breaks down when the cube is
close enough to the observer that each point on it subtends
a significantly different observation angle '1'. In these

Fig. 3: Illustration of the rotation of a cuhe which subtends a small solid
angle when it moves at intermediate and high 13. (a) 1'=30·, 13=0.50,
rp=IS·. (b) 1'=30", 13=0.99; the rear face (colored blue) and the bottom
(colored orange) are seen. The rotation angle rp=120·.

COMPUTERS IN PHYSICS, JUL/AUG 1991 373
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

128.97.43.34 On: Sat, 26 Sep 2015 20:48:35

circumstances, one could, as suggested by Taylor, ap
proach the problem by breaking the cube up into a
multiplicity of smaller cubes and then calculating and
performing the above rotation on each cube. This
conceptual procedure becomes quite cumbersome in a
calculation, since the algorithm must determine how
many secondary cubes to break the primary cube into, and
then find a way to smoothly join the resulting bunch of dif
ferentially rotated secondary cubes for graphical presenta
tion. The problem is further compounded if the original
object is a smooth curved surface and not easily
represented as a collection of cubes. Because of these
difficulties, we choose not to use this approach.

There are other aspects which could be incorporated
into a visual presentation. One of these is the Doppler
effect, which changes the wavelength oflight emitted from
the surface of the object according to the relation:

(2)

where r = (1 - P 2) - 1/2 , ..t is the observed wavelength,
and..to is the wavelength emitted when the object is at rest.
The cube appears bluer as it directly approaches the
observer ('I' = 0), and redder as it recedes ('I' = 1T).

There is also the searchlight effect, in which the
distribution of light emitted from a rapidly moving object
is most intense along the direction of motion. This effect
occurs because, as seen from the observer's viewpoint, the

y

spherical surfaces containing emitted light energy are
closest together along the object's direction of motion, and
thus the light intensity is highest in this direction. The dis
tribution of light intensity is given by Weisskopf2:

1(0) = 1(0') { 1 - p
2

}

(1 +pcos(O)f
(3)

with 1(0 ') the angular distribution oflight intensity in the
object's rest frame. Here, 0 is the angle of observation of
the emitted light with 0 = 1T being the direction in which
the object is moving, and 0 ' is related to 0 by
r sin 0' = sin 0/(1 + P cos 0). Both the Doppler shift
and searchlight effect could be handled using a custom
ized illumination model. However, we do not use this
sophisticated approach in the present demonstration
because of the difficulty of implementing it with the
display software used. The Doppler effect is, though,
treated to first order by assuming the entire object is at an
average elevation angle, and coloring it uniformly accord
ing to the prescription in Eq. (2). In addition, since the
color shift is large for rather modest values of p, we
arbitrarily limit the amount of color shift to keep the cube
in the visible color range.

Finally, there is the effect of relativistic magnifica
tion. One sees the rear of a rapidly approaching object in
the quasi-remote past, and it appears smaller than the
front surface since it was further away when it emitted (or

Fig. 4: Some of the vedors used in calculation of point-hy-point rotation of surface elements of the cube. The
coordinate origin is at (x, y, z)=(O, 0, 0), the vector eye goes from the origin to the ohsener's eye. r. is from
the ohsener's eye to the nearest point on the surface of the cube, while r is a vector to an arbitrary point on
the cube. rre. is the location of the point on the surface (corresponding to r) which emitted a light pulse that
reaches the ohsener at the same time as the light from r •• The point moves a distance d=vt in tbe time it
takes the light emitted at rre. to penetrate a sphere of radius r. (drawn in blue) surrounding the obsener.

374 COMPUTERS IN PHYSICS, JUUAUG 1991
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

128.97.43.34 On: Sat, 26 Sep 2015 20:48:35

reflected) the light. This magnification effect is present in
this demonstration and is noticeable in several of the
examples.

The problem is how to handle all these effects in a
real-time interactive environment. The ray tracing meth
od circumvents all the calculations involving rotations, by
simply following each ray from the eye of the observer
back to the object, and keeping track of the different
propagation times. This technique has been used by
Peterson6 in an article which contains many striking
visual displays. Ray tracing, however, is a time-consuming
process which can take from tens of minutes to hours in
order to generate one image. There is currently no
hardware which can ray trace in real time, so we decided
to develop an algorithm, based on ray tracing concepts,
which could be implemented on one of the new breed of
supergraphics workstations (in this case, a Stardent
Titan-64 MB memory, 2 CPUs).

calculation of the Appearance of a
Relativistically Moving Cube

Light, emitted or reflected from a moving object, reaching
an observer's position at time t = 0, travels various paths
of differing length. In order to reach an observer at the
same instant, light from a section of the object farthest
away from the observer must be emitted earlier than light
from the nearest section of the object. Moreover, since the
object is in motion, it is in a different position at an earlier
time, so that a snapshot of the object in relativistic motion
could be distorted from its shape at rest.

Suppose we know the rest shape of an object, and rep
resent it in the computer as an array of points on the sur
face of the object. The problem then becomes one of
computing the spatial location of various points on the
object's surface when they emit rays reaching the observer
at the same instant, say at t = O. To solve this problem, it
is conceptually helpful to consider the spatial location of
the object at the time the ray traveling the shortest path
length reaches the observer. This ray is emitted from the
point on the object nearest the observer. The light emitted
from the nearest point travels a distance rn to reach the
observer, in a time interval oflength rn/c. All other points
on the object's surface lie outside a sphere of radius rn cen
tered on the observer, as illustrated in Fig. 4. Denoting the
position vector of a point on the object's surface, measured
from the observer's location, by r(t) (vectors are denoted
by bold face, with v (t) the velocity vector), the object was
at position r(t= -rn/c), moving at velocity
v(t = - rn/c), when the ray from the nearest point was
emitted. The trajectory of the cube need not be a straight
line moving at constant velocity. For simplicity of
analysis, however, we will consider the velocity constant,
i.e. v (t) = v (t = 0). The extension of the method to an ac
celerated trajectory will be discussed after analyzing the
constant velocity case.

Now we calculate the position of some point located
on the object's surface (but not the nearest point) when it
emits a light pulse that arrives at the observer at t = o. The
spatial location of this point at time t = - rnlc is
r =!:u + rn, where:

(4)

The vector Aro is the displacement vector from the nearest
point to the emitting point, measured when the object is at
rest. Notice that Eq. (4) contains a Lorentz contraction
factor in the direction of the particle velocity, because the
location r is determined relative to r n' the location of the
nearest point, at a fixed time, namely t = - rn/c. In order
for a pulse of light emitted from the point located at r to
reach the observer at time t = 0, it must penetrate the
spherical surface about the observer's position of radius rn
at the time t = - r n / c. If the position of the point at the
time the pulse is emitted is denoted by r ret' then the time of
flight along the ray path, before the pulse penetrates the
sphere of radius rn, is At = (rret - rn)/c, and the emitting
point on the object has moved a distance

(5)

from its location at t = - rn/c.
The location of the point at the time of emission, r ret'

is related to r by:

d=r-rret (6)

where d is given by Eq. (5). Taking the vector dot product
of both sides of Eq. (6) and using Eq. (5), gives the
expression:

(7)

Taking the vector dot product of Eq. (6) with r and using
Eq. (5) to replace d, the resulting value for r· rret used in
Eq. (7) gives:

rret 2 (1 - 13 2) + 2rret (r· (3 + f32rn)

= r2 + 2r· (3 rn + 13 2rn 2 (8)

Equation (8) can be solved for rret using the standard so
lution for quadratic equations:

rret = _1_ { - bl + (b1
2 - 4a lc l)1I2 } (9)

2 a l

where:

a l = 1 - 13 2

bl = 2(r· (3 + f32rn)

C I = - (r2 + 2r· (3 rn + f32rn2)

(9a)
(9b)
(9c)

The set of all end points of the spatial location
vectors, r ret' comprise a surface that we call the
photosurface. The points on the photosurface correspond
to the location of points on the surface of the cube which
emit or reflect light that arrives at the observer at the same
instant of time (t = 0, for the case under consideration).
The photosurface is generated by the program from the
object's location at t = - rn/c, using Eqs. (4) through
(9). The photosurface can be selected for rendering and
viewing from any angle. Of course, the appearance of the
object is found only by viewing the photosurface from the
observer's location. This view of the photosurface is how
the object would appear if a camera located at the
observer's position took a snapshot of the object at time
t=O.

COMPUTERS IN PHYSICS, JULIAUG ·1991 375

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

128.97.43.34 On: Sat, 26 Sep 2015 20:48:35

Another way to represent the relativistically moving
object is to transform it so that its appearance, when
viewed by the observer, is the same as the appearance of
the photosurface. We first rotate the vectors (labeled
DELTA_R) leading from the nearest point to each point
on the surface of the cube, using the expression for the ap
parent rotation angle of a cube of negligible size (given by
Eq. (1» located at the retarded position fret. The
elevation angle of the point located at fret is given by:

'l'ret = arccos (fret· (31 pr ret) (10)

As illustrated in Fig. 5, the rotation of a particular
DELTA_R vector occurs about an axis in the direction of
f X (3 (which is the same as fret X (3). This axis of rotation
has been named ROTME. Once the point on the object's
surface is rotated in this fashion, the vector from the
observer to the rotated point (f rotated in Fig. 5) is projected
onto the direction of the corresponding point on the
photosurface. This process ensures that each point on the
transformed cube is along the observer's line of sight to the
corresponding point on the photosurface. The rotated
projected cube will then appear identical to the photosur
face from the observer's viewpoint. The transformed cube
is generated by the program using Eqs. (1) and (10), and
can be selected for viewing from any angle.

Both the photosurface and rotated-projected cube
appear identical only when viewed from the observer's
position. However, both objects can be viewed on the
computer screen from positions other than the observer's
position. Usually their appearance is strikingly different.
This ability to view the objects from various aspects can be
thought of as having a second observer observing both the
original observer and the cube. The second observer's view
of the photosurface and transformed cube cannot be
realized in the physical world, but does provide some
instructive insights into the appearance of the relativisti
cally moving cube.

The procedures used to find the photosurface and
transformed cube can easily be generalized to objects of
more complex shape and accelerated trajectories. The
shape of the object is a problem only in regard to program
speed. The data input required is an array of points on the
surface of the object at rest. The complexity of the object's
shape, or accuracy of its description, is then limited by the
array size. Too large an array will slow the program to the
point where it can no longer be considered interactive.

An accelerated trajectory can be handled by replac
ing Eq. (5) with the expression:

f
t"

d = dt' vet') =vt,
tn -t

(11)

with t = (rret - rn)/c, and where v is the average
velocity over the interval from tn - t to tn' The vector fret
can then be found using an iterative approach. The
average velocity is first approximated by setting it equal to
v(tn), that is, its instantaneous value when the ray from
the nearest point is emitted. The vector fret is then found
as in the constant velocity case, and the time interval used
in Eq. (11) is found using t = (rret - rn)/c. Eq. (11)
then gives a new value for d (and thus v) which can be
used in Eqs. (6) through (9) to find a new value ofrreu

376 COMPUTERS IN PHYSICS, JUL/AUG 1991

and thus a new estimate of the time interval to be used in
Eq. (11). This procedure can be repeated until the change
in the average velocity after the iteration is below some
preset criterion (e.g. la vIVI<.Ol).

The velocity trajectory is then broken up into
segments, along which the velocity is constant. At one
time step, the shapes of the surfaces are computed as
described above. At the next time step, in which
tn -+tn + at(n), the spatial location of the cube is
advanced using velocity vn, and the new surfaces are
computed as before. Clearly, the repeated procedure for
finding the average velocity corresponding to each point
on the surface could greatly slow the program. It can be
speeded up by replacing the first estimate of the average
velocity by the value found at the previous time step for
the point in question. In addition, the magnitUde of at(n)
need not be the same for each time step. The value of
at(n) can be determined, for example, by limiting the size
of the derivative of the velocity at each step, i.e. requiring
Iv(t + at) - vet) I/lv(t) 1< e, where e is a small, arbitrar
ily chosen, positive number. In this case, the value of
at(n) varies for each time step, and can adequately
represent the motion when the acceleration is large.

Running the ReaHiview Program
The user interface for the relativity program is structured
so that only a mouse and a dial box are used. Once the pro
gram is initiated, by typing RUNME from the control
console, a main window and several border windows
appear, as shown in Fig. 6. The biggest window, which is
positioned in the upper left-hand part of the screen, is the
DORE window. DORE (Dynamic Object Rendering
Environment) is an object-oriented software graphics
system (a product of the Stardent Computer Company,
Sunnyvale, CA. It is written in C and portable to other
UNIX computers). All the objects required, such as the
cube and the "gun" which fires it, are rendered within the
DORE window. The cube at rest is shown with the bottom
face colored white and the face nearest the observer
colored magenta. A three-dimensional grid centered at
(x = 0, y = 0, z = 0) is displayed. The rectangular

L"~(of (-ttr Tl
~ rtY.i . r,.\, [

1.·1 \,.

O~·SERVEP.

Fig. 5: Elements in the procedure used to transform the rotated cube so
that it appears, to the observer, identical to the photosurface. A vector on
the surface rini.ia' is rotated about the axis rotme by an angle prescribed
by Eq. (1). The rotated vector, rro"'''', is then projected onto r,e" the line
of sight to the corresponding point on th~ photosu'ffac~. D~lta_'f is the
difference between r.nitia' and nearest, the vector from the observer to the
nearest point on the cube (r n).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

128.97.43.34 On: Sat, 26 Sep 2015 20:48:35

Fig. 6: The computer terminal, showing the screen layout used in the program. A cube is shown at rest at the
origin from the perspective of the second obsener.

coordinates range from - 100 < x, y, z, < 100. The unit
of distance in the demonstration depends upon the value
the user assigns to each tick of the clock. If the time inter
val is one second, the unit of length is one light-second
(the distance light travels in a second), or 3 X 108 m. If the
time interval is one nanosecond (10 - 9 seconds), the unit
of length is 30 cm.

In the bottom left-hand part of the screen is an
explanation/instruction window containing a brief ab
stract of the program. To the right is an I/O (input
output) window which is initially blank. It has been used
during program development for debugging purposes and
can show the instantaneous value of a parameter of
interest, such as '1', the average elevation angle in real
time. A stop sign, displayed in the lower right-hand part of
the screen, is used to exit the program. To exit, the mouse
is positioned within it and clicked. A button window is lo
cated in the upper right-hand part of the screen. To
"press" a button, the mouse arrow is positioned on one
and clicked. The button functions are explained in detail
below. A window in the lower right-hand part of the
screen contains a set of dial icons. There is a one-to-one
correspondence between the dial icons and the physical
dial set. The function of each dial is written on the screen
above it. If dial hardware is not present, a dial may be acti
vated by placing the mouse on the icon and clicking. Since
there are more dial functions necessary to run the program
than physical dials, there are two sets, A and B. Clicking
on the button labeled "knob set B" toggles between the
two dial sets.

Buttons
The buttons displayed on the right-hand side of the screen
(Fig. 6) perform the following functions:

(1) Rep Type: sets the mode in which solid objects are
drawn. Objects can be displayed as a collection of points, a
wireframe structure, or a shaded surface.
(2) Shading: sets the shading type. The cube and gun can
be flat or Gourard-shaded.
(3) Highlights: determines whether glossy highlights will
be present.
(4) Time steps: sets the maximum number of time steps
for the animation. This can be any positive integer
number. The default number is 100. If an object moves
slowly, it may not go far in 100 steps.
(5) Background: sets the screen background color to
black, red, green or blue.
(6) Box color: sets the color of the cube to either a single
color or a separate color for each face. The single color,
which is set to green when f3 = 0, is used to illustrate the
Doppler effect. The separately-colored surfaces are not
Doppler-shifted. They are, however, useful when studying
the rotations and extreme distortions of the cube at large f3
and arbitrary direction of motion with respect to the
observer.
(7) Object: determines the object displayed on the screen.
In one instance it is the photosurface, and in the second it
is the rotated-deformed cube.
(8) Camera: switches the viewpoint between two posi
tions. In one case the camera is positioned at the
observer's location. In the second case the camera may be
positioned anywhere, and the observer's position is
denoted by an X along the x-axis. This case corresponds to
an observer able to observe the original observer.
(9) Animate: starts or stops a clock determining the time
intervals between successive positions of the cube. When
the cube is moving and the animate button is pressed, the
cube will remain frozen at its last position.

COMPUTERS IN PHYSICS, JUL/AUG 1991 377
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

128.97.43.34 On: Sat, 26 Sep 2015 20:48:35

DIaISIt A

All the dials in this set are used to set the cube's initial po
sition and velocity in three-dimensional space. A gun (or
launcher) is shown with its muzzle pointing in the
direction of the cube velocity.
Dials 1,2 and 3: set the cube's initial x, yand z position on
the rectangular coordinate axis.

Fig. 7: (a) top; (b) center; (c) bottom. A view of the transformed cube and
photosurface from the perspective of the second observer, and also from
the observer's viewpoint. The center of the object is at y=80.0, the
viewer is at x=600.0, and the cube is moving along the x-axis with
/3=0.99. This and subsequent figures are discussed in more detail in the
"Examples" section of the text.

371 COMPUTERS IN PHYSICS, JUL/AUG 1991

Dial 4: sets the observer's position on the x-axis. The
current observer's location is displayed by the symbol X.
Dial 5 and 6: set the spherical coordinate angles () and ifJ.
The angles are in degrees and appear below the knob as it
turns.
Dial 7: This dial sets the magnitude ofthe cube's velocity
(0.0.;;; P.;;; 0.999).
Dial 8: This dial changes the intensity of the lights which
illuminate the cube.

Dial Set B
All the dials in this set are used to control the viewing ori
entation of the second observer. They do not change any
of the parameters of the cube motion.
Dials 1, 2 and 3: rotate the entire grid around the x, y or z
coordinate axis. The degrees rotated are shown below the
corresponding icon and may take on positive or negative
values. Positive rotations are determined by the right
hand rule.
Dial 4: zooms the camera in or out from the grid origin.
Dials 5 and 6: translate the entire grid relative to the
center of the screen in the x and y directions.

Examples
Figure 7a shows the appearance of a cube traveling at
p = .99 (i.e. 99% ofthe speed of light) in the x direction
toward an observer located at x = 600. The cube is
initially located at (x, y, z) = (0, 80, 0) so that its
elevation angle is 7.5". Fig. 7b shows the photosurface for
the same case as Fig. 7a, from the perspective of an
observer looking at both the cube and the first observer.

Fig. 8: A cube moving along the x-axis with /3=0.95 and center at 20.0
shows the differential rotation due to the changing viewing angle across
the surface of a large object. The observer is at x=100.0.

Note that the photosurface is highly elongated, since P is
large, but, as illustrated in Fig. 7c, both the cube and pho
tosurface appear identical from the perspective of the
observer located at x = 600. Even though P is large, the
apparent rotation (Fig. 3) is less than 90·, since the angle
of elevation is small, and the observer sees the (white) bot
tom and (magenta) front surfaces of the cube.

Fig. 8 shows the distortion of a large cube due to vari
ation of elevation angle from bottom to top. The cube
center is at y = 20, while its lower edge is at y = 2, and the
observer is much closer, at x = 100. The top edge of the

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

128.97.43.34 On: Sat, 26 Sep 2015 20:48:35

Fig. 9: (a) top; (b) center; (c) bottom. A sequence showing the cube mov
ing along the x-axis through tbe observer's position at x=20.0 with
1l=0.9S, iUustrating both the dramatic change in the appearance of the
object and the Doppler shift.

cube corresponds to an elevation angle of 11.3°, and with
fJ = 0.950, a small cube would appear to rotate by about
55°. The bottom edge corresponds to an elevation angle of
only 1.10, so a small cube would rotate about 5°. The large
cube in this figure rotates differentially, and thus its front
surface becomes rounded.

In the next sequence, a cube, centered at the origin
and moving along the x-axis with fJ = 0.95, approaches an
observer at x = 20. Before the cube reaches the observer
(Fig. 9a), it is blue-shifted. At fJ = .95, the color shift is

enough to move the color out of the visual range.
However, the program arbitrarily limits the color shift to
keep it in the visual range; The cube appears elongated and
nearly bullet-shaped because light from the back of the
cube reaches the observer from the past, when the cube
was much farther away, so that the rear is squashed down.
This is a manifestation of the relativistic magnification
effect mentioned earlier. In Fig. 9b, the cube is on top of
the observer, and its overall color shifts toward green,
which is the object's color at rest (fJ = 0). The leading
edge appears large, since it is beyond, but close to, the ob-

Fig. 10: The cube can appear highly distorted for certain viewing aspects
and high velOCities, as illustrated here by a cube with velocity direction
angles 8=112.5", 4j!=43.S· and 1l=.9S.

server, so that it subtends a large solid angle. Finally, the
cube turns red and appears more cube-like (Fig. 9c) as it
recedes from the observer.

Finally, for the same fJ and observer position as in the
previous case, the cube can assume very distorted
appearances when it is launched at an arbitrary angle,
such as () = 112.5" and <P = 43.5", as shown in Fig. 10. The
velocity direction angles are the standard angles used in
spherical coordinates, with () measured from the positive
z-axis and <p measured from the positive x-axis.

Coneilliois
The primary visual effect of relativistic motion viewed in
the sunlit world is an apparent rotation. An object moving
with velocity v and viewed at position r appears to rotate
about an axis in the v X r direction. The amount of rotation
depends upon the viewing angle and relative speed. In
addition, objects which subtend a substantial solid angle
with respect to the observer may appear to be distorted.
This distortion results from a differential apparent
rotation and is not due to a fundamental physical effect
such as Lorentz contraction.

The appearance of the relativistically moving object
can be modeled by different surfaces. The photosurface is
not a rotated object and involves displacements only in the
direction of the velocity. The transformed cube involves
both rotations and projections. Both objects appear
identical from the observer's viewpoint, and are therefore

i interchangeable representations in this respect. However,
to a second observer (who is only metaphysically
realizable and exists only in the computer world), the

COMPUTERS IN PHYSICS, JUUAUG 1991 379
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

128.97.43.34 On: Sat, 26 Sep 2015 20:48:35

transformed cube is a much more interesting and dramatic
object than the photosurface. The primary utility of the
rotated cube is that it actualizes the rotation apparent to
the observer, and thus, in some sense, retains the effects of
the apparent rotation even from other perspectives. On the
other hand, the photosurface appears to be a rotated
object only from the observer's perspective. However, the
concept of the photosurface is closely related to the actual
motion of the object, and it is much easier to calculate the
shape of the photosurface. When demonstrating physical
ly realizable effects of relativistic motion, the photosurface
should be used.

Acknowledgements: This work would not have been
possible without a grant from the UCLA Office of
Instructional Development. The authors of this article
would like to thank the Stardent computer corporation
and Jim White for help in supplying needed software and
for providing help with their DORE graphics program.
We would also like to acknowledge many useful discus
sions with Professor Joe Rudnick of the UCLA Physics
Department. •

References

1. E.F. Taylor, J.A. Wheeler, Spacetime Physics, 17- 22, W.H.
Freeman Company, New York (1966).

2. V.F. Weisskopf, Physics Today, 24-27 (Sept. , \960).
3. 1. Terrell , Phys. Rev. , 116, 1041 (1959).
4. R. Penrose, Proc. Cambridge Phil. Soc., 55, \37 (1959) .
5. Taylor, E.F. Introductory Mechanics, 349- 358, J. Wiley & Sons,

New York (1963) .
6. I. Peterson, Science News, 137, 232 (1990).
7. S. Harrington, Computer Graphics, A Programming Approach,

256-261, McGraw-Hili, New York (1987) .

Appendix

This appendix contains a discussion of the structure of the
code used to obtain a real-time representation of a
relativistically moving cube. The code can be roughly
grouped into three classes of software. The main part, and
the focus of this paper, is the subroutine which calculates
the positions of points on the surface of the relativistic ob
ject as a function of time. This module, realtiview, is
written in FORTRAN and is described in detail below.
The next module, geom _spec, is written in C and uses the
data passed from realtiview to create the graphical objects
(in this case the cube and gun which fires it). One of the
first things thatgeom_spec does is pass the data on the ob
ject's surface points to a routine called patchfit.c, which
takes an array in rectangular coordinates and fits a set of
triangular patches to it. Any graphical object is construct
ed out of a number of these patches. As the object becomes
more deformed, this routine may create tens of thousands
of patches to accurately fit it. This means that highly
deformed cubes, which are moving close to the speed of
light, wind up moving more slowly across the screen since
the computation time goes up with the number of patches.
Geom_spec then calls the DORE library, which in turn
renders and colors the objects in three-dimensional space.
The main graphical program main.c is not unlike the
conductor of an orchestra. It initializes the X windows,

380 COMPUTERS IN PHYSICS, JUL/AUG 1991

controls all the peripherals such as the mouse and knobs,
and allows the user to interact with the objects. These
latter routines are complex, took many man-years to write
and, fortunately, can be ignored for the most part. They
are simply linked into the program. The total number of
modules in this package is 22, and access is required to
nine libraries (e.g., FORTRAN77, C, XII, mathlib,
DORE).

The Subroutlle Realtlvlew
The FORTRAN subroutine which does all the calcula
tions is entitled realtiview (real-time relativity view). It is
written in FORTRAN, since this compiler generates
faster and more efficiently vectorized code. An annotated
listing of it is provided below. It calculates and passes the
points on the photosurface and transformed cube to the
graphics programs. The first array, surface, is the rotated
and deformed cube as seen by an observer at location
r = (X, 0, 0). The second array, ph_surface, is the
photosurface. Other information about the observer's
position and gun location is passed to this routine as well.
For every time step, 'it', realtiview evaluates the position,
shape and color of the cubes, and passes them to the
graphics package for rendering.

In the first time step, it = 0, realtiview creates two
cubes. One cube (surface) is sized normally and is used to
calculate the transformed cube, and the other cube
(Lorentz_surf) is Lorentz contracted, and is used to
calculate points on the photosurface. The transformed
cube is placed at the origin and rotated to line up with the
gun. All rotations are done point by point, using the
standard transformation and rotation matrices.7 In gen
eral, every time this subroutine is called, an array of
vectors, r _surf, from each point on the Lorentz surface to
the eye of the observer is created, and an axis of rotation
for each surface point is evaluated from r _surf X v and
placed in ROTME. Next, the point on Lorentz_surf
nearest the observer's eye is found and stored in nearest.
Then the photosurface is calculated from the current
position of Lorentz_surf. In addition, the angle of
elevation of the points on the photosurface are found and
stored in sigh_ tot. The program then creates the distorted
cube by rotating each point on surface by angle lP
calculated from Eq. (1), about the axis in ROTME. The
rotated surface is then moved so that the point on the sur
face corresponding to the nearest point is at position
nearest.

c

z

Subroutine realtiview(surface,ph_surface,eye,orig,
pos_gun, v, vvv ,it,hue)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

128.97.43.34 On: Sat, 26 Sep 2015 20:48:35

cc
c Input parameters:
c eye(3) position of the observer's eye
c orig(3) position of the origin
c v(3) velocity of cube 0':;v':;.995
c pos_gun(3) position of gun which fires the cube
c vvv(3) 9, 'P, v angles gun makes and mag of velocity
c it time step ~ 0
c Output parameters:
c surface surface of distorted cube
c ph_surface photosurface of cube
c hue Doppler shifted color of cube
c
c The horizon is at y = 0
c Written W. Gekelman, J. Maggs, L. Xu 1989
ccc
c
c
c

c

c
c
c
c
c
c

c

c
c
c
c

c
c
c
c

c
C

C

Declaration of variables:

real eye(3),orig(3)
!

real pos-8un(3)

! students eye pos1l10n
and origin of cooorindate system position

real eye_mag
real v(3)
real vvv(3)
real t,temp
real theta
real del_theta
real beta,c
real theta_prime, time
real pos_old(3),pos_new(3)
real hue,hueO
real shift

! init position of cubes
center
magnitude of eye
cube's center velocity
theta , phi , v_mag
time
angle as seen by observer
angle of rotation of each
vIc

angle seen by observer
original position of cube
color 0.0-0.5
normalization for color

real angle
real gamma

average angle cube makes with horizon
! relativistic factor

real r_ret_hat(6,16,3)
real surface(6,16,3)
real ph_surface(6,16,3)
real surface_orig(6,16,3)
real Lorentz_surCorig(6,16,3)
real Lorentz_surf(6,16,3)
real r_surf(6,16,4)
real rotme(6,16,3)
real sigh_tot(6,16)
real nearest(4)

unit vector in r_ret direc.
points on object's surface
photo surface
created surface
surface with contractions
surface with contractions
store scratch rpoint,magr
rotation axis
total rot angle each point
nearest point to eye

integer it,i !
save surface_orig,Lorentz_surCorig

time step
! keep upon reentering

**

The original position of the cube is stored in the
lst of 16 arrays

hueO = 0.25
c = l.0
if (it.eq.O)then
beta = 0.0
do i = 1,3

pos_old(i) = pos_gun(i)
pos_new(i) = pos-8un(i)
beta = v(i)**2 + beta
enddo
beta = sqrt(beta)/c
if(beta.ge.l.O)beta = 0.99999
gamma sqrt(l.O-beta*beta)
gamma l.O/gamma

0.25=green for color map
normalized speed of light
is it the first pass?

save original position
of the gun

! initialize position
! ditto

protection on divide
the standard

definition of relativistic factor

Calculate position of points on surface given pos_new and beta
First create the cube with center at the orgin

call create(surface,Lorentz_surf,beta,gamma) ! create cube

Rotate cube so that face 6 is in beta direction, and place it at
initial position pos_new position of cube center

call rotate(Lorentz_surf,v,beta) !Lorentz surface
call rotate(surface,v,beta) ! rotate uncontracted cube

Next: point cube in beta direc. and translate to iposO

c

c

c

c
c
c

c

c
c
c
c

c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c

c
c
c
c

c
c
c
c
c
c
c
c

do isur = 1,6 save newly created surfaces
do ipnt = 1,16 ! 16 points/side of cube
do ix = 1,3 ! x, y z

surface_orig(isur,ipnt,ix) surface(isur,ipnt,ix)
Lorentz_surf_orig(isur,ipnt,ix) = Lorentz_surf(isur,ipnt,ix)

enddo
enddo

enddo

endif

time = it
do i = 1,3

it = 0 surfaces done

make it real

pos_new(i) = pos_old(i) + v(i)*time
! for visible motion on screen

pos-8un(i) = pos_new(i)
enddo

! pass position of cube center

Move surface to next position Dist = vel*time

do isur = 1,6

do ipnt = 1,16
do ix = 1,3

new position of undistorted but Contracted
surface

Lorentz_surf(isur,ipnt,ix) = Lorentz_surCorig(isur,ipnt,ix)
+ pos_new(ix) ! move em out

surface(isur,ipnt,ix) = surface_orig(isur,ipnt,ix) ! rawhide!
enddo

enddo
enddo

Find the pOS1llOn vectors of points on the surface relative
to the observer - store them in r_surf.

call calc_r(Lorentz_surf,r _surf,beta,eye)

Calculate axis of rotation for each point on the surface.

call axis_oCrot(r_surf, v ,beta,rotme)

Find nearest point to observers's eye and keeps track of it
nearest is the point on cube through which overall rotation will
be done, ie rotation will be done about axis in rotme direction
and point of rotation at nearest!

call nearescpt(r_surf,nearest,eye,eye_mag) ! find nearest
! point on surface to the observer

Calculate the photosurface - store results in ph_surface
Calculate elevation angles at retarded position - store
values in sigh_tot.

call find_sigh_total(r_surf,ph_surface,sigh_tot,r_reChat,
1 nearest,eye,v,beta)

Finally do the distortion on the original surface
relative rotates each point on the cube as if it was a
microscopic cube.

call relative(surface,nearest,sigh_tot,r_surf,rotme,
1 rJet_hat,eye, v, beta,pos_new ,angle)

Relativistic rotation based upon elevation angle of the
retarded position

do isur = 1,6 new position of distorted surface
do ipnt = 1,16
do i = 1,3

surface(isur,ipnt,i)

enddo
enddo

enddo

surface(isur ,ipnt,i)
+ pos_new(i) ! move em out

Now finaUy,finally calculate Doppler shifted color
and map values into Dore (software color map) which is:
hue = 0.25 is green, hue = 0.50 is red, hue = 0.0 is blue
visible wavelengths:
A.B(blue) = 390 nm, A.G(green) = 500nm, A.R(red) = 640 nm
Doppler: A. = A.oy(l-Ikos'¥) , let hue = In(A./A.B)

COMPUTERS IN PHYSICS, JUL/AUG 1991 381
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

128.97.43.34 On: Sat, 26 Sep 2015 20:48:35

c

c
c

c
c
c
c
c
c

c
c
c
c

c
c
c

c

c

c
c
c

shift = gamma*(I.O-angle)
shift = log(shift)
hue = hueO + shift
if(hue.le.O.O) hue = 0.0
if(hue.gt.0.5) hue = 0.5

keep cube in visible color range
limit hue between 0.0 and 0.5

return
end

to graphics program

subroutine create(surface,Lorentz_surf,beta,gamma)

Given beta and assume center of cube is at (0,0,0) find all the
surface points (six surfaces 16 points on each) surface
Surfacesl-4 are Lorentz contracted, beta is normal to surface 6.
beta is along the x direction. y direction is vertical

real surface(6,16,3) pts on surface of cube
real Lorentz_surf(6,16,3) array of Lorentz contracted pts
real x,y,z,xc , points on surfaces
real IiCside,side,contside,c,gamma,alpha

, start with cube at origin
and assume that v points along z axis .. Then rotate cube so
that its contracted face is parallel to v

iii_side = 12.0
side = 3.0*IiCside
contside = side*gamma

length of side of cube
for even spacing along each side
Lorentz contracted side

Create all points on the surface if beta is along x

do is = 1,4
ipnt = 0

surfaces parallel to beta
init counter

do ix = 1,4
Y = float(ix-I)*IiI_side

do iy = 1,4

, 4 perp surfaces
-0.5*side

ipnt = ipnt + 1
if(mod(is,2).eq.0)then

, step to 16 for each is
, face 2 and 4 or bot and top
, at +/- y = side!2

z = float(iy-1)*liCside - O.5*side
xc = (float(is)-3.0)*0.50*gamma*side , contracted bot

, surface is # 2
x = (float(is)-3.0)*0.50*side , bot surface is=2

elseif(mod(is,2).eq.l}then , face 1,3 is=l,3
z = (float(is!2) -O.5)*side , is =1 get -L!2,is=4 get L!2
xc = float(iy-I)*gamma*liI_side - 0.5*contside
x = float(iy-I)*IiCside - 0.5*side

endif
surface(is,ipnt,l) = x
surface(is,ipnt,2) = y
surface(is,ipnt,3) = z
Lorentz_surf(is,ipnt,l) = xc

do i = 2,3 , contraction is along x only!!
Lorentz_surf(is,ipnt,i) surface(is,ipnt,i)

enddo
enddo

enddo
, iy
, iz

enddo , is = 1,4

Now faces perpendicular to beta

do is = 5,6 , furthest (5) and closest to beta (6)
y = side*(float(is)-5.0) - 0.50*side

ipnt = 0
do iz = 1,4
z = float(iz-1)*liCside - 0.5*side

do iy = 1,4
ipnt = ipnt + 1
x = float(iy-1)*IiCside - O.S*side
xc = float(iy-1)*liCside*gamma - 0.5*contside
surface(is,ipnt,l) = x
surface(is,ipnt,2) = y
surface(is,ipnt,3) = z
Lorentz_surf(is,ipnt,l) = xc

do i = 2,3 , contraction is along x only!!
Lorentz_surf(is,ipnt,i) = surface(is,ipnt,i)

enddo
caddo

enddo
enddo , is

382 COMPUTERS IN PHYSICS, JUL/AUG 1991

c

c
c
c
c
c

c

c
c
c

c

c

c

c

c
c
c
c
c

c

return
end

subroutine axis_oCrot(r_surf, v ,beta,rotme)

Given the particle velocity and vector from each point on
its surface to eyeO find rotation axis
This is done using the vector cross product vXr_surf

real csurf(6,16,4)
real v(3)
real rotme(6,16,3)

do is = 1,6

points on surface
cube velocity
rotation axis for each point

six surfaces
do ipnt = 1,16

rotme(is,ipnt,l}
rotme(is,ipnt,2)
rotme(is,ipnt,3)

, 16 pnts on each
v(3)*r_surf(is,ipnt,2)-v(2)*r_surf(is,ipnt,3)
v(I) *csurf(is,ipnt,3)-v(3)*r _surf(is,ipnt,l)
v(2)*Csurf(is,ipnt,l)-v(I)*r_surf(is,ipnt,2)

enddo
enddo
return
end

subroutine nearescpt(r_surf,nearest,eye,eye_mag)

Finds nearest point to observers's eye and keeps track of it

real r_surf(6,16,4)
real nearest(4)
real eye(3),eye_mag
real lorentz_surf(6,16,3)
real a,bmag,delta_r(3)
real magn,magna
real saveme(2,16)
integer nearmag

magna = r_surf(I,l,4)
do is = 1,6

scratch array
returned position and magnitude

used in finding nearest
scratch variables
scratch array
number of identical nearest pts

do ipnt = 1,16
if(magna.gt.r_surf(is,ipnt,4»then
magna = Csurf(is,ipnt,4)

endif
enddo

enddo
nearmag = 0
do is = 1,6
do ipnt = 1,16

if(magna.eq.csurf(is,ipnt,4 »then
Allow for possibility of more than one nearest point'

nearmag = nearmag + 1
saveme(l,nearmag) = is
saveme(2,nearrnag) = ipnt

endif
enddo

enddo

do i = 1,5 initialize
nearest(i) = 0.0

enddo
Calculate average nearest point
do j = l,nearmag
do i = 1,4

nearest(i) = Csurf(saveme(l,j),saveme(2,j),i)+nearest(i)
enddo

enddo
do i = 1,4

nearest(i) = nearest(i)!float(nearmag)
end do
Calculate actual nearest point starting with average nearest

point as an estimate
The following loop could be repeated to improve accuracy - but

one pass gives an estimate adequate for most purposes.

do is=l,6 loop over surfaces
do ipnt = 1,16 16 points per surface

c Find projection of each vector from 'nearest' to a point on surface
c (delta_r) and test if it is negative - if yes make new 'nearest'
c which is perpendicular to deIta_r

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

128.97.43.34 On: Sat, 26 Sep 2015 20:48:35

c
a=O.

doi=l,3
delta_r{i) = r_surf(is,ipntJ) - nearest(i)

a = delta_r{i)*nearest(i) + a
enddo

if «a.It.O.O).and.(a .It. -0.1» then
c Compute the square of the magnitude of delta_r

c

c

bmag = O.
do i=I,3

bmag=delta_r(i)*delta_r(i) + bmag
enddo

compute new nearest
do i=I,3

nearest(i)=nearest(i)-a *delta_r(i)!bmag
enddo

endif
enddo

enddo

magn = 0.0
do i=I,3

magn = nearest(i)*nearest(i) + magn
enddo
magn = sqrt(magn)
nearest(4)=magn magnitude of nearest vector

100 return

c
c
c
c
c

c

c

end

subroutine rotate(surface, v ,beta)

Given cube at origin. Move to position(3) and then
rotate it to point along the beta direction
returns rotated array in surface

real beta, v(3)
real surface(6,16,3)
real theta
real little
real Al,Bl,Cl
real VIV,L
real xl,x2,x3
real yl,y2,y3
real zl,z2,z3
real sinI,cosI,sinJ,cosJ
real vector(3)

little = 1.0e-6

vIc, velocity vector of cube
original/rotated array

blowup protection
vector components of curl
in transform matricies
temporary x posItion
temporary y position
temporary z position
angles for rotation about VXrip
! vector position of each pt on cube

! 10 prevent blowup

c Determine axis of rotation.
c

c

c

c
c
c

c

c

c
c
c

Al = O.
Bl = v(3)/(beta + little)
Cl = - v(2)/(beta + little)

VIV = (BI*BI + CI·CI)
L = sqrt(VIV + Al*AI)
VIV = sqrt(VIV)
cosI = CI/(VIV + little)
sinI = BI/(VIV + little)
cosJ = VIV/(L + little)
sinJ = AI/(L + little)

components of rotation axis

if«Cl.eq.O.).and.(Bl.eq.O.» gOlo 100
Rotation angle is found by taking dot product between y-axis
and v.

theta = acos(v(I)/(beta + little»

do isur = 1,6
do ipnt = 1,16
do iu = 1,3

vector(iu) surface(isur,ipnt,iu)
enddo

xl = vector(l)
yl = cosI*vector(2)-sinI*vector(3)
zl = cosI*vector(3)+sinI*vector(2)

now rotate cube about y so that z axis corresponds to axis of
rotation

c

c
c
c

c
c
c

c

c
c
c

c

c

x2 = cosJ*xl-sinJ*zl
y2 = yl
z2 = cosJ*zl +sinJ*x I

now DO the relativistic rotation (about new z)

x3 = x2*cos(theta) + y2*sin(theta)
y3 = y2*cos(theta) - x2*sin(theta)

z3=z2

now do inverse transforms

x2 = cosJ*x3+sinJ*z3
y2 = y3
z2 = cosJ*z3-sinJ*x3

inverse rot about y

xl = x2 inverse rot about x
yl = cosI*y2+sinI*z2
zl = cosI*z2-sinI*y2

Now translate cube back to where it was at the outset

surface(isur,ipnt,l) = xl
surface(isur,ipnt,2) = yl
surface(isur,ipnt,3) = zl

enddo
enddo

! ipnt over points
! isur 6 surfaces

100 return

c

c
c
c
c
c
c

end

subroutine calc_r(Lor_surf,r_surf,beta,eye)

Calculates the angle of rotation
for each point on surface according to apparant relativistic
rotation. Taylor Introductory Mechanics pg 357
These are put into an array (sigh(6,16» to be used later

real beta

NEW! Version II!

the ultimate plotting package

Lightning fast graphics, powerful data analysis.
An indispensible tool for handling technical data.

Call 1-800-833-1511 or write for your

Free Working Demo
Originally developed at MIT Lincoln Laboratory. Runs on PCs with
EGA, VGA, or Hercules graphics. SUpPQrts color p(inting and EMS
memory. Mouse optional. Price: $349. Dealer inll,uiries welcome.

~ S' I S ft 6 Peny St, Suite 2, Brookline, MA 02146
\;;'P plra 0 ware (617)739-1511, FAX: (617) 739-<4836

Circle number 13 on RelMler Service Card

COMPUTERS .. PHYSICS, JUUAUG 1991 313

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

128.97.43.34 On: Sat, 26 Sep 2015 20:48:35

c

c

c

real eye(3) posillon of observer's eye
real Locsurf(6,16,3) points on surface of rotated cube
real little overflow prevention
real r_surf(6,16,4) ! for calculations (rpoint,rmag)
real rpoint(3),mag_rpoint

if(beta.eq.O)goto 100
little = 1.0e-6

do is = 1,6
do ipnt = 1,16

bailout no need to work
divide protect

over all 6 surfaces
! 16 points/surface

c Find the spatial location of points on the surface
c as measured from the observer's position.
c

c
c
c

rnag_rpoint = 0.0 ! initialize
do i = 1,3

rpoint(i) = LoCsurf(is,ipnt,i) - eye(i)
mag.,rpoint = mag_rpoint + rpoint(i)**2

enddo
mag_rpoint = sqrt(mag_rpoint)

Calculate angle of elevation for this x,y,z triplet

do i = 1,3
r_surf(is,ipnt,i) = rpoint(i)

enddo
Csurf(is,ipnt,4) = magJPoint

enddo
enddo

save for later

! ipnt
! is

100 return

c

c

c
c
c

c

c

end

subroutine
I

find_sigh_total(r_surf,ph_surf,sigh_tot,r_re,-hat,
nearest, eye, v ,beta)

real r.:,.surf(6,16,4) store scratch rpoint,magr,sigh
real ph_surf(6,16,3) light surface - position of

retarded emission points
real cre,-hat(6,16,3) unit vector along r-retarded
real beta,beta2,v(3),eye(3)
real rmag magnitude of rpointO
real nearest(4) nearest point on cube to eye
real sigh_tot(6,16) total rotation angle
real c,d,little
real al,bl,cl,dl ! for calculating rret
real r_dot_beta,b2rn,rnmag,rret
real vt,ret_pos(3),cos_sigh

calculate angle beta makes with x-z plane

little = 1.0e-6
if(beta.eq.O)goto 100
beta2 = beta*beta
rnmag = nearest(4)
b2rn = beta2*rnmag

do is = 1,6
do ipnt = 1,16

rmag = r_surf(is,ipnt,4)

di vide protect
bailout no need to work

over a\l 6 surfaces
! 16 points/surface

c Calculate the position of the points such that
c emitted rays reach the observer simultaneous
c with a ray from the nearest point.
c

r_do'-beta = 0.0
do i = 1,3

Cdo'-beta = r_surf(is,ipnt,i)*v(i) + r_dot_beta
enddo
al = 1. - beta2
bl = 2*(r_do,-beta + b2rn)
cl = -rmag*rmag - 2.*cdoLbeta*rnmag-b2rn*rnmag

dl = bl *bl - 4.*al *c1
rret = (-bl + sqrt(dl)/(2.*al + little)
vt = rret-rnmag

cos_sigh = 0.0
do i = 1,3

TeLPos(i) = T_surf(is,ipnt,i) -vt*v(i)
cre,-hat(is,ipnt,i) = ret_pos(i)/(rret + little)
ph_surf(is,ipnt,i) = eye(i) + re,-pos(i)

384 COMPUTERS IN PHYSICS, JUL/AUG 1991

c
c
c

c

c

c
c
c
c
c
c
c
c

c

c
c
c

100

Calculate the angle of elevation of the retarted position.

cos_sigh = - ret,JlOs(i)*v(i) + cos_sigh
enddo
cos_sigh = cos_sigh/(rret*beta + little)

sigh_tot(is,ipnt) acos(cos_sigh)

enddo ! ipnt
enddo ! is

return
end

subroutine
I

relative(surface,nearest,sigh_tot,r_surf,rotme,
r_reLhat,eye, v ,beta,pos_new ,angle)

Rotate each point on surface according to apparant relativistic
rotation. Taylor + plane wave correction
With sigh_tot the total rotation angle move cube so that axis
through nearest point is z axis and rotate each point by sigh_tot
about this. rotate pointson the uncontracted cube. Points on the
contracted cube were used to find the rotation angles

real r_surf(6,16,4) store scratch rpoint,magr,sigh
real beta,v(3),beta2,gamma v/c,velocity, beta*beta
real surface(6,16,3) points on surface of rotated cube
real nearest(4) nearest point on cube to eye
real sigh_tot(6,16) total rotation angle
real rotme(6,16,3) rotation axis
real r_re,-hat(6,16,3) unit vector along r-retarded
real little small number
real eye(3),pos_new(3) dist eye to (0,0,0) and new pos
real ctr_to_nearest(3) vector for moving cube b/4 rot
real ctn_unc(3) uncontracted ctr_to_nearest
real proj(3),pro projection along beta
real AI,BI,CI vector components of curl
real VIV,L in transform matricies
real theta,xx,angle cos(total angle of elevation)
real ctn_dotv cube center dot vO
real cos_doppler cosine of doppler angle
real sign,signdop sign's of angles
real sinl,cosl,sin] ,cos] angles for rotation about VXrip
real vector(3) vector pos of each pt on cube
real r_doLrhat dot product of rand cret_hat
real no_points no points on cube

if(beta.eq.O.O)goto 100 no action dont bother
little = 1.0e-6
no_points = 16.0*6.0

beta2 = beta *beta
gamma = 1./(sqrt(1.-beta2»
ctD_dotv = O. ! used to undo a Lorentz contract

do i = 1,3
ctr_to_nearest(i) nearest(i) - pos_new(i) + eye(i)
ctD_dotv = ctr_to_nearest(i)*v(i) + ctn_dotv

enddo
ctn_dotv = ctn_dotv*(gamma - 1.0)/beta2

Uncontract center-to-nearest point on cube vector

do i = 1,3
ctn_unc(i) = ctr_to_nearest(i) + ctn_dotv*v(i)

enddo
c Rotate each vector on the surface around rolme by angle sigh_tot

c

do is = 1,6
do ipnt = 1,16

A I = rotrne(is,ipnt,l)
BI = rotme(is,ipnt,2)
CI = rotme(is,ipnt,3)

VIV = (BI *BI + CI *CI)
L = sqrt(VIV + Al *Al)
VIV = sqrt(VIV)
cosl = CI/(VIV + little)
sinl = B l/(V I V + little)
cosJ = V I V /(L + little)
sin] = AI/(L + little)

c Calculate angle of elevation for this x,y,z triplet
c For Doppler shift evaluation

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

128.97.43.34 On: Sat, 26 Sep 2015 20:48:35

c

c
c
c
c

c
c
c
c
c

c
c

c
c
c
c

c

cos_doppler = 0.0
do i = 1,3

cos_doppler = cos_doppler + r_surf(is,ipnt,i)*v(i)
enddo

cos_doppler = cos_doppler/(csurf(is,ipnt,4) + lillie)
angle = angle + cos_doppler ! ave angle for

Now do relativistic rotation

sigh = sigh_tot(is,ipnt)
cos_sigh = cos(sigh)

! Doppler shift

xx = (cos_sigh - beta)/(l. - beta*cos_sigh + little)
if(abs(xx).gt.l.) xx = l.
theta = acos(xx) - sigh

Before rotation about rotme we must
Translate cube back so that it will rotate about nearestO
Recalculate Lorentz contraction
Uncontract component of ctr_to_nearest along velocity vector

do i = 1,3
Vector points from a point on the surface nearest the
observer to each labled point on the surface

vector(i) = surface(is,ipnt,i) - ctn_unc(i)
enddo

now rotate cube (about x) so that new axis of rotation
is in the x-z plane

xl = vector(l)
yl = cosl*veclor(2)-sin'*vector(3)
z I = cosI*vector(3)+sin'*vector(2)

c
c
c

c
c
c

c

c
c
c
c

c
c

c

now DO the relativistic rotation (about new z)

x3 = x2*cos(theta) + y2*sin(theta)
y3 = y2*cos(lheta) - x2*sin(thela)

z3=z2

now do inverse transforms

x2 = cosJ*x3+sinJ*z3
y2 = y3
z2 = cosJ*z3-sinJ*x3

inverse rot about y

xl = x2 inverse rot about x
yl = cosI*y2+sinI*z2
zl = cosI*z2-sinI*y2

Correct rotated surface so that each point lies along direction
of corresponding point on photosurface.

cdo,-rhat
r_do,-rhat
1

(nearesl(l) + xl)*r_re'-hat(is,ipnt,l)
(nearest(2) + yl)*r_ret_hat(is,ipnt,2)

+ r_dot_rhat

xl
yl
zl

(nearest(3) + zl)*r_re,-hat(is,ipnt,3)
+ r_do,-rhat

cdot3hat*r_ret_hal(is,ipnt,1)
cdot_rhat*r_re'-hat(is,ipnt,2)
r_do,-rhat*r_re'-hat(is,ipnt,3)

nearest(l)
nearest(2)
nearest(3)

Now translate cube back 10 where it was at the outset
surface(is,ipnt,l) = xl + clr_to_nearest(l)
surface(is,ipnt,2) = yl + clr_lo_nearest(2)
surface(is,ipnt,3) = zt + ctr_lo_nearest(3)

c rOlate cube about y so that z axis corresponds to axis of rOlalion enddo
enddo

! ipnt
! is c

x2 = cosJ*xl-sinJ*zl
y2 = yl
z2 = cosJ*zl +sinJ*xl

\0 IJrogramJllillg /({Il/<il/ages 10

{(lart! . \ 0 1'00/(lS 10 r pnll'l1ziJer.

With MathTYlw you ('I'('all'

anrl atld 4>qllalion~ 10 YOIII'

c/()('lInH'nt hy IIsi ng 'implr
point-and-click IrchniqlU's, All
without lJuittin rr YOIl I' wortl
pro(·('ssor.

MalhType ha~ an inlilitivr
Wysn YG

100 angle = angle/no_points
return
end

MalhType has pull·down menus contammg templales and mathematical symbols, You
select the symbols and MathType automatically formats your work.

ave angle cube makes with x-z plane

Other systems make you enter cryptic
codes, WordPerfect: !.F.FT
IlLINE lv",,,hi ,lWEI

LINE < -SUM F~OM
TO l)lF l.EFT ...

leI' 'Jer!u. fe
i(r\ lh Vert 1"

J!" :m '$ nl KIA inl ' Y
t ,Yo liI - ·IAln'!) ., .

Ask ror your FIIEE 04'm41

Disk ariel BnN'hIll1'lill'l' illle'I'
PC Ill ' Maeilllosh.

COlllplete Sq/iu;are Poc/mgl's:
PC/I illdollls I'I'rsioll: 219
l1 (II' l'l'rsioll:, I 19

Ct'l) inlt'rru(T.
O\,rl' 175 llIalll('llIat

ie'al symhols anti
1f'llIplah"s ,4'(I I1\'I' I1 -

irnlly arrang(·tI ill
pllll-tlnwlI nll'nll8.

With MathTypc', ('CJllatilln wl'ili,,;!;
is as I'asy as filling in Ill(' hlanks.

~MathType
ow yllil I'all c'I'l'all' I 11I', I't

lJualil t('('hnic-ul c!CIC'III11I' nts {'asil
and lJuickly.

Circle number 14 on R •• der ServIce Card

Design Science Inc,. 4028 Broadway, Long BeaCh. CA 90803

1-800-827-0685

COMPUTER5 IN PHY5IC5, JUL/AUG 1991 315

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

128.97.43.34 On: Sat, 26 Sep 2015 20:48:35

