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Real-Time 
Relativity 
Walter Gekelman, James Maggs and Lingyu Xu 

An interactive program provides the means of illustrating the effects 
of high velocity on the appearance of a common object 

his article describes a software package which 
calculates and displays in real time the shape of 
a cube moving at relativistic velocity in the 
sunlit world. Examples of its output are 
presented to illustrate the effects of high 
velocity on the appearance of a common object. 

The cube may be launched from any position and at any 
angle relative to the observer, but the velocity, /3 = vic, is 
assumed constant. The parameters used in the program 
may be varied in real time using buttons and knobs. The 
entire program is menu-driven, and one can choose to 
view the cube as a Doppler-shifted object or to have each 
face colored differently to keep track of the large 
distortions which can occur. This article contains the 
theory and computational method used to calculate and 
display the resulting shape. The most important subrou
tines are contained in the appendix. 

Introduction 
In introductory courses on special relativity, students are 
taught about Lorentz contraction and time dilation with 
respect to two inertial frames in relative motion. Many 
students come away with the impression that if an object 
were moving toward them at an appreciable fraction of the 
speed of light, it would appear contracted in its direction 
of motion. It has been understood for many years that this 
is not the case, and that the Lorentz contraction applies in 
a world described by measurement with a lattice of clocks 
and meter sticks. I The "observation" of an object in this 
world rests on analysis of data tapes issued by detectors 
and clocks within the lattice, long after the object is gone. 
All parts of an object must be measured at the same time 
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in order to observe the phenomenon of Lorentz contrac
tion. The difference between a human observer, or a 
camera, and this type of measurement is that a light 
sensor, at any given instant of time, detects light which 
may have originated from the object at very different 
times. This effect was recognized by several authors2,3,4 

over thirty years ago, and several calculations were done 
to find the shape of simple objects moving at relativistic 
speeds, as seen by Ii human observer. 

For several reasons, little of this work has filtered 
down to the classroom. Students generally have such a 
difficult time with the concepts of relativity that many 
instructors feel additional information may lead to an 
irreversible overload. Also, there has been very little 
available in visualization tools to dramatically illustrate 
relativistic effects. A large part of the difficulty that 
students have with physics is an inability to form a picture 
which captures the essence of the subject apart from the 
mathematics in which it is couched. If the problem 
involves three- (or more) dimensional forms changing in 
space and time, ordinary blackboard diagrams become 
nearly useless. 

Fortunately, the introduction of powerful graphics 
workstations is changing this picture. This article de
scribes, in detail, an interactive program which runs and 
renders, in real time, a cube moving at constant relativistic 
speeds in any direction with respect to an observer. The 
code can be straightforwardly modified to deal with any 
shape or any velocity trajectory. The article is organized 
as follows. First, we describe the problem in more detail 
and review some of the ways others have tackled it. Then 
we present our algorithm for solving it, before proceeding 
with a description of the program and its user interface 
and a presentation of several examples of the output. 
Finally, we list the most important parts of the code. 

Tbe Visual Appearance of an Object 
Moving at Relativistic Velocities 
Consider the emission of light from a simple object, 
namely a cube, moving rapidly toward an observer in the 
absence of gravitational fields. As shown in Fig. 1, a 
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spherical wave emitted, with the cube at rest, from a point 
P on the rear surface, is blocked by the back of the cube 
and is therefore not visible to the observer at point X. Dif
fractive effects are not considered here. Light rays are 
normal to the spherical surface and cannot bend around 
comers. In contrast, when the cube moves rapidly toward 
the observer at velocity v along x, it can outrace most of 
the expanding light sphere, and the ray emitted from the 

'.7 , ... 

Fig. 1: Illustration of how light emitted from the rear of a rapidly-moving 
cube can reach an observer. (a) Light emitted from a point on the back of 
a stationary cube is blocked by the cube. The hemispherical blue surface 
represents a light pulse emitted from the rear ofthe cube. (b) A rapidly
moving cube emits a light pulse at the same time and pusition as the sta
tionary cube in (a), but the cube races to the right so that light from the 
expanding spherical wavefront is no longer blocked and can arrive at the 
observer. 

point P on the rear face can get to the observer's eye. The 
angle of elevation, '1', at which this happens is given 
simply by 'I' p = cos - 1 (vic). 5 It is, therefore, possible to 
see the rear side of a cube approaching at relativistic speed 
from a viewing angle from which this would not be 
possible if the cube were at rest! 

If the cube is far enough away so that every point on 
it subtends approximately the same angle 'I' with respect 
to the observer, the cube will appear to be rotated as a sol
id object.2 The cube appears to rotate as a solid object be
cause it is Lorentz contracted. If it were not Lorentz 
contracted, it would appear to be elongated along its 
direction of motion. The relationship between the angle of 
observation, '1', and the angle of apparent rotation, cp, is 
given by5: 

cos 'I' - {3 
cp = arccos { } - 'I' 

1 - {3 cos 'I' 
(1) 

When 'I' = 0°, the object moves directly toward the 
observer and the rear face is never observed (i.e. 
'I' + cp = 0). When 'I' increases for a fixed large {3, 
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Fig. 2: Graph of Eq. (1), the apparent rotation of a small cube as a func
tion of elevation angle and 13. For 13 > 0.95 and a range of elevation an
gles, the cube can rotate more than 90" so that an observer will see the 
rear face. 

({3 = vic), the rear face of the cube comes into view at the 
angle of elevation 'I' p (i.e. 'I' p + cp = 1T12). In the limiting 
case as {3 -+ 1, the cube appears to rotate so that only the 
rear face is visible from any observation angle (i.e. 
'I' + cp = 1T). If one plots the angle of apparent rotation of 
the cube as a function of the angle of observation5

, as 
shown in Fig. 2, another interesting phenomenon emerges. 
For large {3 ({3 > .95) and a certain range of observation 
angles ('I' « 90°), the cube can appear to rotate more than 
90°. In these cases, the bottom face of the cube appears to 
swap places with the front face, and the rear face with the 
bottom face, as illustrated in Fig. 3. For small{3 (0.5), the 
object rotates slightly (¢J = 18°). As {3 approaches unity, 
the cube can rotate more than 90° so that the rear is visible 
to the observer. 

The simple analysis breaks down when the cube is 
close enough to the observer that each point on it subtends 
a significantly different observation angle '1'. In these 

Fig. 3: Illustration of the rotation of a cuhe which subtends a small solid 
angle when it moves at intermediate and high 13. (a) 1'=30·, 13=0.50, 
rp=IS·. (b) 1'=30", 13=0.99; the rear face (colored blue) and the bottom 
(colored orange) are seen. The rotation angle rp=120·. 
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circumstances, one could, as suggested by Taylor, ap
proach the problem by breaking the cube up into a 
multiplicity of smaller cubes and then calculating and 
performing the above rotation on each cube. This 
conceptual procedure becomes quite cumbersome in a 
calculation, since the algorithm must determine how 
many secondary cubes to break the primary cube into, and 
then find a way to smoothly join the resulting bunch of dif
ferentially rotated secondary cubes for graphical presenta
tion. The problem is further compounded if the original 
object is a smooth curved surface and not easily 
represented as a collection of cubes. Because of these 
difficulties, we choose not to use this approach. 

There are other aspects which could be incorporated 
into a visual presentation. One of these is the Doppler 
effect, which changes the wavelength oflight emitted from 
the surface of the object according to the relation: 

(2) 

where r = (1 - P 2) - 1/2 , ..t is the observed wavelength, 
and..to is the wavelength emitted when the object is at rest. 
The cube appears bluer as it directly approaches the 
observer ('I' = 0), and redder as it recedes ('I' = 1T). 

There is also the searchlight effect, in which the 
distribution of light emitted from a rapidly moving object 
is most intense along the direction of motion. This effect 
occurs because, as seen from the observer's viewpoint, the 

y 

spherical surfaces containing emitted light energy are 
closest together along the object's direction of motion, and 
thus the light intensity is highest in this direction. The dis
tribution of light intensity is given by Weisskopf2: 

1(0) = 1(0') { 1 - p
2 

} 

(1 +pcos(O)f 
(3) 

with 1(0 ') the angular distribution oflight intensity in the 
object's rest frame. Here, 0 is the angle of observation of 
the emitted light with 0 = 1T being the direction in which 
the object is moving, and 0 ' is related to 0 by 
r sin 0' = sin 0/( 1 + P cos 0). Both the Doppler shift 
and searchlight effect could be handled using a custom
ized illumination model. However, we do not use this 
sophisticated approach in the present demonstration 
because of the difficulty of implementing it with the 
display software used. The Doppler effect is, though, 
treated to first order by assuming the entire object is at an 
average elevation angle, and coloring it uniformly accord
ing to the prescription in Eq. (2). In addition, since the 
color shift is large for rather modest values of p, we 
arbitrarily limit the amount of color shift to keep the cube 
in the visible color range. 

Finally, there is the effect of relativistic magnifica
tion. One sees the rear of a rapidly approaching object in 
the quasi-remote past, and it appears smaller than the 
front surface since it was further away when it emitted (or 

Fig. 4: Some of the vedors used in calculation of point-hy-point rotation of surface elements of the cube. The 
coordinate origin is at (x, y, z)=(O, 0, 0), the vector eye goes from the origin to the ohsener's eye. r. is from 
the ohsener's eye to the nearest point on the surface of the cube, while r is a vector to an arbitrary point on 
the cube. rre. is the location of the point on the surface (corresponding to r) which emitted a light pulse that 
reaches the ohsener at the same time as the light from r •• The point moves a distance d=vt in tbe time it 
takes the light emitted at rre. to penetrate a sphere of radius r. (drawn in blue) surrounding the obsener. 
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reflected) the light. This magnification effect is present in 
this demonstration and is noticeable in several of the 
examples. 

The problem is how to handle all these effects in a 
real-time interactive environment. The ray tracing meth
od circumvents all the calculations involving rotations, by 
simply following each ray from the eye of the observer 
back to the object, and keeping track of the different 
propagation times. This technique has been used by 
Peterson6 in an article which contains many striking 
visual displays. Ray tracing, however, is a time-consuming 
process which can take from tens of minutes to hours in 
order to generate one image. There is currently no 
hardware which can ray trace in real time, so we decided 
to develop an algorithm, based on ray tracing concepts, 
which could be implemented on one of the new breed of 
supergraphics workstations (in this case, a Stardent 
Titan-64 MB memory, 2 CPUs). 

calculation of the Appearance of a 
Relativistically Moving Cube 

Light, emitted or reflected from a moving object, reaching 
an observer's position at time t = 0, travels various paths 
of differing length. In order to reach an observer at the 
same instant, light from a section of the object farthest 
away from the observer must be emitted earlier than light 
from the nearest section of the object. Moreover, since the 
object is in motion, it is in a different position at an earlier 
time, so that a snapshot of the object in relativistic motion 
could be distorted from its shape at rest. 

Suppose we know the rest shape of an object, and rep
resent it in the computer as an array of points on the sur
face of the object. The problem then becomes one of 
computing the spatial location of various points on the 
object's surface when they emit rays reaching the observer 
at the same instant, say at t = O. To solve this problem, it 
is conceptually helpful to consider the spatial location of 
the object at the time the ray traveling the shortest path 
length reaches the observer. This ray is emitted from the 
point on the object nearest the observer. The light emitted 
from the nearest point travels a distance rn to reach the 
observer, in a time interval oflength rn/c. All other points 
on the object's surface lie outside a sphere of radius rn cen
tered on the observer, as illustrated in Fig. 4. Denoting the 
position vector of a point on the object's surface, measured 
from the observer's location, by r(t) (vectors are denoted 
by bold face, with v (t) the velocity vector), the object was 
at position r(t= -rn/c), moving at velocity 
v(t = - rn/c), when the ray from the nearest point was 
emitted. The trajectory of the cube need not be a straight 
line moving at constant velocity. For simplicity of 
analysis, however, we will consider the velocity constant, 
i.e. v (t) = v (t = 0). The extension of the method to an ac
celerated trajectory will be discussed after analyzing the 
constant velocity case. 

Now we calculate the position of some point located 
on the object's surface (but not the nearest point) when it 
emits a light pulse that arrives at the observer at t = o. The 
spatial location of this point at time t = - rnlc is 
r =!:u + rn, where: 

(4) 

The vector Aro is the displacement vector from the nearest 
point to the emitting point, measured when the object is at 
rest. Notice that Eq. (4) contains a Lorentz contraction 
factor in the direction of the particle velocity, because the 
location r is determined relative to r n' the location of the 
nearest point, at a fixed time, namely t = - rn/c. In order 
for a pulse of light emitted from the point located at r to 
reach the observer at time t = 0, it must penetrate the 
spherical surface about the observer's position of radius rn 
at the time t = - r n / c. If the position of the point at the 
time the pulse is emitted is denoted by r ret' then the time of 
flight along the ray path, before the pulse penetrates the 
sphere of radius rn, is At = (rret - rn )/c, and the emitting 
point on the object has moved a distance 

(5) 

from its location at t = - rn/c. 
The location of the point at the time of emission, r ret' 

is related to r by: 

d=r-rret (6) 

where d is given by Eq. (5). Taking the vector dot product 
of both sides of Eq. (6) and using Eq. (5), gives the 
expression: 

(7) 

Taking the vector dot product of Eq. (6) with r and using 
Eq. (5) to replace d, the resulting value for r· rret used in 
Eq. (7) gives: 

rret 2 (1 - 13 2) + 2rret (r· (3 + f32rn) 

= r2 + 2r· (3 rn + 13 2rn 2 (8) 

Equation (8) can be solved for rret using the standard so
lution for quadratic equations: 

rret = _1_ { - bl + (b1
2 - 4a lc l )1I2 } (9) 

2 a l 

where: 

a l = 1 - 13 2 

bl = 2(r· (3 + f32rn ) 

C I = - (r2 + 2r· (3 rn + f32rn2) 

(9a) 
(9b) 
(9c) 

The set of all end points of the spatial location 
vectors, r ret' comprise a surface that we call the 
photosurface. The points on the photosurface correspond 
to the location of points on the surface of the cube which 
emit or reflect light that arrives at the observer at the same 
instant of time (t = 0, for the case under consideration). 
The photosurface is generated by the program from the 
object's location at t = - rn/c, using Eqs. (4) through 
(9). The photosurface can be selected for rendering and 
viewing from any angle. Of course, the appearance of the 
object is found only by viewing the photosurface from the 
observer's location. This view of the photosurface is how 
the object would appear if a camera located at the 
observer's position took a snapshot of the object at time 
t=O. 
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Another way to represent the relativistically moving 
object is to transform it so that its appearance, when 
viewed by the observer, is the same as the appearance of 
the photosurface. We first rotate the vectors (labeled 
DELTA_R) leading from the nearest point to each point 
on the surface of the cube, using the expression for the ap
parent rotation angle of a cube of negligible size (given by 
Eq. (1» located at the retarded position fret. The 
elevation angle of the point located at fret is given by: 

'l'ret = arccos (fret· (31 pr ret) (10) 

As illustrated in Fig. 5, the rotation of a particular 
DELTA_R vector occurs about an axis in the direction of 
f X (3 (which is the same as fret X (3). This axis of rotation 
has been named ROTME. Once the point on the object's 
surface is rotated in this fashion, the vector from the 
observer to the rotated point (f rotated in Fig. 5) is projected 
onto the direction of the corresponding point on the 
photosurface. This process ensures that each point on the 
transformed cube is along the observer's line of sight to the 
corresponding point on the photosurface. The rotated
projected cube will then appear identical to the photosur
face from the observer's viewpoint. The transformed cube 
is generated by the program using Eqs. (1) and (10), and 
can be selected for viewing from any angle. 

Both the photosurface and rotated-projected cube 
appear identical only when viewed from the observer's 
position. However, both objects can be viewed on the 
computer screen from positions other than the observer's 
position. Usually their appearance is strikingly different. 
This ability to view the objects from various aspects can be 
thought of as having a second observer observing both the 
original observer and the cube. The second observer's view 
of the photosurface and transformed cube cannot be 
realized in the physical world, but does provide some 
instructive insights into the appearance of the relativisti
cally moving cube. 

The procedures used to find the photosurface and 
transformed cube can easily be generalized to objects of 
more complex shape and accelerated trajectories. The 
shape of the object is a problem only in regard to program 
speed. The data input required is an array of points on the 
surface of the object at rest. The complexity of the object's 
shape, or accuracy of its description, is then limited by the 
array size. Too large an array will slow the program to the 
point where it can no longer be considered interactive. 

An accelerated trajectory can be handled by replac
ing Eq. (5) with the expression: 

f
t" 

d = dt' vet') =vt, 
tn -t 

(11 ) 

with t = (rret - rn )/c, and where v is the average 
velocity over the interval from tn - t to tn' The vector fret 
can then be found using an iterative approach. The 
average velocity is first approximated by setting it equal to 
v(tn ), that is, its instantaneous value when the ray from 
the nearest point is emitted. The vector fret is then found 
as in the constant velocity case, and the time interval used 
in Eq. (11) is found using t = (rret - rn )/c. Eq. (11) 
then gives a new value for d (and thus v) which can be 
used in Eqs. (6) through (9) to find a new value ofrreu 
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and thus a new estimate of the time interval to be used in 
Eq. (11). This procedure can be repeated until the change 
in the average velocity after the iteration is below some 
preset criterion (e.g. la vIVI<.Ol). 

The velocity trajectory is then broken up into 
segments, along which the velocity is constant. At one 
time step, the shapes of the surfaces are computed as 
described above. At the next time step, in which 
tn -+tn + at(n), the spatial location of the cube is 
advanced using velocity vn, and the new surfaces are 
computed as before. Clearly, the repeated procedure for 
finding the average velocity corresponding to each point 
on the surface could greatly slow the program. It can be 
speeded up by replacing the first estimate of the average 
velocity by the value found at the previous time step for 
the point in question. In addition, the magnitUde of at(n) 
need not be the same for each time step. The value of 
at(n) can be determined, for example, by limiting the size 
of the derivative of the velocity at each step, i.e. requiring 
Iv(t + at) - vet) I/lv(t) 1< e, where e is a small, arbitrar
ily chosen, positive number. In this case, the value of 
at(n) varies for each time step, and can adequately 
represent the motion when the acceleration is large. 

Running the ReaHiview Program 
The user interface for the relativity program is structured 
so that only a mouse and a dial box are used. Once the pro
gram is initiated, by typing RUNME from the control 
console, a main window and several border windows 
appear, as shown in Fig. 6. The biggest window, which is 
positioned in the upper left-hand part of the screen, is the 
DORE window. DORE (Dynamic Object Rendering 
Environment) is an object-oriented software graphics 
system (a product of the Stardent Computer Company, 
Sunnyvale, CA. It is written in C and portable to other 
UNIX computers). All the objects required, such as the 
cube and the "gun" which fires it, are rendered within the 
DORE window. The cube at rest is shown with the bottom 
face colored white and the face nearest the observer 
colored magenta. A three-dimensional grid centered at 
(x = 0, y = 0, z = 0) is displayed. The rectangular 

L"~(of (-ttr Tl 
~ ...... rtY.i . r,.\, [ 

1.·1 \,. 

O~·SERVEP. 

Fig. 5: Elements in the procedure used to transform the rotated cube so 
that it appears, to the observer, identical to the photosurface. A vector on 
the surface rini.ia' is rotated about the axis rotme by an angle prescribed 
by Eq. (1). The rotated vector, rro"'''', is then projected onto r,e" the line 
of sight to the corresponding point on th~ photosu'ffac~. D~lta_'f is the 
difference between r.nitia' and nearest, the vector from the observer to the 
nearest point on the cube (r n ). 
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Fig. 6: The computer terminal, showing the screen layout used in the program. A cube is shown at rest at the 
origin from the perspective of the second obsener. 

coordinates range from - 100 < x, y, z, < 100. The unit 
of distance in the demonstration depends upon the value 
the user assigns to each tick of the clock. If the time inter
val is one second, the unit of length is one light-second 
(the distance light travels in a second), or 3 X 108 m. If the 
time interval is one nanosecond (10 - 9 seconds), the unit 
of length is 30 cm. 

In the bottom left-hand part of the screen is an 
explanation/instruction window containing a brief ab
stract of the program. To the right is an I/O (input
output) window which is initially blank. It has been used 
during program development for debugging purposes and 
can show the instantaneous value of a parameter of 
interest, such as '1', the average elevation angle in real 
time. A stop sign, displayed in the lower right-hand part of 
the screen, is used to exit the program. To exit, the mouse 
is positioned within it and clicked. A button window is lo
cated in the upper right-hand part of the screen. To 
"press" a button, the mouse arrow is positioned on one 
and clicked. The button functions are explained in detail 
below. A window in the lower right-hand part of the 
screen contains a set of dial icons. There is a one-to-one 
correspondence between the dial icons and the physical 
dial set. The function of each dial is written on the screen 
above it. If dial hardware is not present, a dial may be acti
vated by placing the mouse on the icon and clicking. Since 
there are more dial functions necessary to run the program 
than physical dials, there are two sets, A and B. Clicking 
on the button labeled "knob set B" toggles between the 
two dial sets. 

Buttons 
The buttons displayed on the right-hand side of the screen 
(Fig. 6) perform the following functions: 

( 1) Rep Type: sets the mode in which solid objects are 
drawn. Objects can be displayed as a collection of points, a 
wireframe structure, or a shaded surface. 
(2) Shading: sets the shading type. The cube and gun can 
be flat or Gourard-shaded. 
(3) Highlights: determines whether glossy highlights will 
be present. 
( 4) Time steps: sets the maximum number of time steps 
for the animation. This can be any positive integer 
number. The default number is 100. If an object moves 
slowly, it may not go far in 100 steps. 
(5) Background: sets the screen background color to 
black, red, green or blue. 
( 6) Box color: sets the color of the cube to either a single 
color or a separate color for each face. The single color, 
which is set to green when f3 = 0, is used to illustrate the 
Doppler effect. The separately-colored surfaces are not 
Doppler-shifted. They are, however, useful when studying 
the rotations and extreme distortions of the cube at large f3 
and arbitrary direction of motion with respect to the 
observer. 
(7) Object: determines the object displayed on the screen. 
In one instance it is the photosurface, and in the second it 
is the rotated-deformed cube. 
(8) Camera: switches the viewpoint between two posi
tions. In one case the camera is positioned at the 
observer's location. In the second case the camera may be 
positioned anywhere, and the observer's position is 
denoted by an X along the x-axis. This case corresponds to 
an observer able to observe the original observer. 
( 9) Animate: starts or stops a clock determining the time 
intervals between successive positions of the cube. When 
the cube is moving and the animate button is pressed, the 
cube will remain frozen at its last position. 
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DIaISIt A 

All the dials in this set are used to set the cube's initial po
sition and velocity in three-dimensional space. A gun (or 
launcher) is shown with its muzzle pointing in the 
direction of the cube velocity. 
Dials 1,2 and 3: set the cube's initial x, yand z position on 
the rectangular coordinate axis. 

Fig. 7: (a) top; (b) center; (c) bottom. A view of the transformed cube and 
photosurface from the perspective of the second observer, and also from 
the observer's viewpoint. The center of the object is at y=80.0, the 
viewer is at x=600.0, and the cube is moving along the x-axis with 
/3=0.99. This and subsequent figures are discussed in more detail in the 
"Examples" section of the text. 
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Dial 4: sets the observer's position on the x-axis. The 
current observer's location is displayed by the symbol X. 
Dial 5 and 6: set the spherical coordinate angles () and ifJ. 
The angles are in degrees and appear below the knob as it 
turns. 
Dial 7: This dial sets the magnitude ofthe cube's velocity 
(0.0.;;; P.;;; 0.999). 
Dial 8: This dial changes the intensity of the lights which 
illuminate the cube. 

Dial Set B 
All the dials in this set are used to control the viewing ori
entation of the second observer. They do not change any 
of the parameters of the cube motion. 
Dials 1, 2 and 3: rotate the entire grid around the x, y or z 
coordinate axis. The degrees rotated are shown below the 
corresponding icon and may take on positive or negative 
values. Positive rotations are determined by the right
hand rule. 
Dial 4: zooms the camera in or out from the grid origin. 
Dials 5 and 6: translate the entire grid relative to the 
center of the screen in the x and y directions. 

Examples 
Figure 7a shows the appearance of a cube traveling at 
p = .99 (i.e. 99% ofthe speed of light) in the x direction 
toward an observer located at x = 600. The cube is 
initially located at (x, y, z) = (0, 80, 0) so that its 
elevation angle is 7.5". Fig. 7b shows the photosurface for 
the same case as Fig. 7a, from the perspective of an 
observer looking at both the cube and the first observer. 

Fig. 8: A cube moving along the x-axis with /3=0.95 and center at 20.0 
shows the differential rotation due to the changing viewing angle across 
the surface of a large object. The observer is at x=100.0. 

Note that the photosurface is highly elongated, since P is 
large, but, as illustrated in Fig. 7c, both the cube and pho
tosurface appear identical from the perspective of the 
observer located at x = 600. Even though P is large, the 
apparent rotation (Fig. 3) is less than 90·, since the angle 
of elevation is small, and the observer sees the (white) bot
tom and (magenta) front surfaces of the cube. 

Fig. 8 shows the distortion of a large cube due to vari
ation of elevation angle from bottom to top. The cube 
center is at y = 20, while its lower edge is at y = 2, and the 
observer is much closer, at x = 100. The top edge of the 
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Fig. 9: (a) top; (b) center; (c) bottom. A sequence showing the cube mov
ing along the x-axis through tbe observer's position at x=20.0 with 
1l=0.9S, iUustrating both the dramatic change in the appearance of the 
object and the Doppler shift. 

cube corresponds to an elevation angle of 11.3°, and with 
fJ = 0.950, a small cube would appear to rotate by about 
55°. The bottom edge corresponds to an elevation angle of 
only 1.10, so a small cube would rotate about 5°. The large 
cube in this figure rotates differentially, and thus its front 
surface becomes rounded. 

In the next sequence, a cube, centered at the origin 
and moving along the x-axis with fJ = 0.95, approaches an 
observer at x = 20. Before the cube reaches the observer 
(Fig. 9a), it is blue-shifted. At fJ = .95, the color shift is 

enough to move the color out of the visual range. 
However, the program arbitrarily limits the color shift to 
keep it in the visual range; The cube appears elongated and 
nearly bullet-shaped because light from the back of the 
cube reaches the observer from the past, when the cube 
was much farther away, so that the rear is squashed down. 
This is a manifestation of the relativistic magnification 
effect mentioned earlier. In Fig. 9b, the cube is on top of 
the observer, and its overall color shifts toward green, 
which is the object's color at rest (fJ = 0). The leading 
edge appears large, since it is beyond, but close to, the ob-

Fig. 10: The cube can appear highly distorted for certain viewing aspects 
and high velOCities, as illustrated here by a cube with velocity direction 
angles 8=112.5", 4j!=43.S· and 1l=.9S. 

server, so that it subtends a large solid angle. Finally, the 
cube turns red and appears more cube-like (Fig. 9c) as it 
recedes from the observer. 

Finally, for the same fJ and observer position as in the 
previous case, the cube can assume very distorted 
appearances when it is launched at an arbitrary angle, 
such as () = 112.5" and <P = 43.5", as shown in Fig. 10. The 
velocity direction angles are the standard angles used in 
spherical coordinates, with () measured from the positive 
z-axis and <p measured from the positive x-axis. 

Coneilliois 
The primary visual effect of relativistic motion viewed in 
the sunlit world is an apparent rotation. An object moving 
with velocity v and viewed at position r appears to rotate 
about an axis in the v X r direction. The amount of rotation 
depends upon the viewing angle and relative speed. In 
addition, objects which subtend a substantial solid angle 
with respect to the observer may appear to be distorted. 
This distortion results from a differential apparent 
rotation and is not due to a fundamental physical effect 
such as Lorentz contraction. 

The appearance of the relativistically moving object 
can be modeled by different surfaces. The photosurface is 
not a rotated object and involves displacements only in the 
direction of the velocity. The transformed cube involves 
both rotations and projections. Both objects appear 
identical from the observer's viewpoint, and are therefore 

i interchangeable representations in this respect. However, 
to a second observer (who is only metaphysically 
realizable and exists only in the computer world), the 
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transformed cube is a much more interesting and dramatic 
object than the photosurface. The primary utility of the 
rotated cube is that it actualizes the rotation apparent to 
the observer, and thus, in some sense, retains the effects of 
the apparent rotation even from other perspectives. On the 
other hand, the photosurface appears to be a rotated 
object only from the observer's perspective. However, the 
concept of the photosurface is closely related to the actual 
motion of the object, and it is much easier to calculate the 
shape of the photosurface. When demonstrating physical
ly realizable effects of relativistic motion, the photosurface 
should be used. 
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Appendix 

This appendix contains a discussion of the structure of the 
code used to obtain a real-time representation of a 
relativistically moving cube. The code can be roughly 
grouped into three classes of software. The main part, and 
the focus of this paper, is the subroutine which calculates 
the positions of points on the surface of the relativistic ob
ject as a function of time. This module, realtiview, is 
written in FORTRAN and is described in detail below. 
The next module, geom _spec, is written in C and uses the 
data passed from realtiview to create the graphical objects 
(in this case the cube and gun which fires it). One of the 
first things thatgeom_spec does is pass the data on the ob
ject's surface points to a routine called patchfit.c, which 
takes an array in rectangular coordinates and fits a set of 
triangular patches to it. Any graphical object is construct
ed out of a number of these patches. As the object becomes 
more deformed, this routine may create tens of thousands 
of patches to accurately fit it. This means that highly 
deformed cubes, which are moving close to the speed of 
light, wind up moving more slowly across the screen since 
the computation time goes up with the number of patches. 
Geom_spec then calls the DORE library, which in turn 
renders and colors the objects in three-dimensional space. 
The main graphical program main.c is not unlike the 
conductor of an orchestra. It initializes the X windows, 
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controls all the peripherals such as the mouse and knobs, 
and allows the user to interact with the objects. These 
latter routines are complex, took many man-years to write 
and, fortunately, can be ignored for the most part. They 
are simply linked into the program. The total number of 
modules in this package is 22, and access is required to 
nine libraries (e.g., FORTRAN77, C, XII, mathlib, 
DORE). 

The Subroutlle Realtlvlew 
The FORTRAN subroutine which does all the calcula
tions is entitled realtiview (real-time relativity view). It is 
written in FORTRAN, since this compiler generates 
faster and more efficiently vectorized code. An annotated 
listing of it is provided below. It calculates and passes the 
points on the photosurface and transformed cube to the 
graphics programs. The first array, surface, is the rotated 
and deformed cube as seen by an observer at location 
r = (X, 0, 0). The second array, ph_surface, is the 
photosurface. Other information about the observer's 
position and gun location is passed to this routine as well. 
For every time step, 'it', realtiview evaluates the position, 
shape and color of the cubes, and passes them to the 
graphics package for rendering. 

In the first time step, it = 0, realtiview creates two 
cubes. One cube (surface) is sized normally and is used to 
calculate the transformed cube, and the other cube 
(Lorentz_surf) is Lorentz contracted, and is used to 
calculate points on the photosurface. The transformed 
cube is placed at the origin and rotated to line up with the 
gun. All rotations are done point by point, using the 
standard transformation and rotation matrices.7 In gen
eral, every time this subroutine is called, an array of 
vectors, r _surf, from each point on the Lorentz surface to 
the eye of the observer is created, and an axis of rotation 
for each surface point is evaluated from r _surf X v and 
placed in ROTME. Next, the point on Lorentz_surf 
nearest the observer's eye is found and stored in nearest. 
Then the photosurface is calculated from the current 
position of Lorentz_surf. In addition, the angle of 
elevation of the points on the photosurface are found and 
stored in sigh_ tot. The program then creates the distorted 
cube by rotating each point on surface by angle lP 
calculated from Eq. (1), about the axis in ROTME. The 
rotated surface is then moved so that the point on the sur
face corresponding to the nearest point is at position 
nearest. 

c 

z 

Subroutine realtiview(surface,ph_surface,eye,orig, 
pos_gun, v, vvv ,it,hue) 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

128.97.43.34 On: Sat, 26 Sep 2015 20:48:35



cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c Input parameters: 
c eye(3) position of the observer's eye 
c orig(3) position of the origin 
c v(3) velocity of cube 0':;v':;.995 
c pos_gun(3) position of gun which fires the cube 
c vvv(3) 9, 'P, v angles gun makes and mag of velocity 
c it time step ~ 0 
c Output parameters: 
c surface surface of distorted cube 
c ph_surface photosurface of cube 
c hue Doppler shifted color of cube 
c 
c The horizon is at y = 0 
c Written W. Gekelman, J. Maggs, L. Xu 1989 
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
c 
c 

c 

c 
c 
c 
c 
c 
c 

c 

c 
c 
c 
c 

c 
c 
c 
c 

c 
C 

C 

Declaration of variables: 

real eye(3),orig(3) 
! 

real pos-8un(3) 

! students eye pos1l10n 
and origin of cooorindate system position 

real eye_mag 
real v(3) 
real vvv(3) 
real t,temp 
real theta 
real del_theta 
real beta,c 
real theta_prime, time 
real pos_old(3 ),pos_new(3) 
real hue,hueO 
real shift 

! init position of cubes 
center 
magnitude of eye 
cube's center velocity 
theta , phi , v_mag 
time 
angle as seen by observer 
angle of rotation of each 
vIc 

angle seen by observer 
original position of cube 
color 0.0-0.5 
normalization for color 

real angle 
real gamma 

average angle cube makes with horizon 
! relativistic factor 

real r_ret_hat(6,16,3) 
real surface(6,16,3) 
real ph_surface(6,16,3) 
real surface_orig(6,16,3) 
real Lorentz_surCorig(6,16,3) 
real Lorentz_surf(6,16,3) 
real r_surf(6,16,4) 
real rotme(6,16,3) 
real sigh_tot(6,16) 
real nearest( 4) 

unit vector in r_ret direc. 
points on object's surface 
photo surface 
created surface 
surface with contractions 
surface with contractions 
store scratch rpoint,magr 
rotation axis 
total rot angle each point 
nearest point to eye 

integer it,i ! 
save surface_orig,Lorentz_surCorig 

time step 
! keep upon reentering 

****************************************** 

The original position of the cube is stored in the 
lst of 16 arrays 

hueO = 0.25 
c = l.0 
if (it.eq.O)then 
beta = 0.0 
do i = 1,3 

pos_old(i) = pos_gun(i) 
pos_new(i) = pos-8un(i) 
beta = v(i)**2 + beta 
enddo 
beta = sqrt(beta)/c 
if(beta.ge.l.O)beta = 0.99999 
gamma sqrt(l.O-beta*beta) 
gamma l.O/gamma 

0.25=green for color map 
normalized speed of light 
is it the first pass? 

save original position 
of the gun 

! initialize position 
! ditto 

protection on divide 
the standard 

definition of relativistic factor 

Calculate position of points on surface given pos_new and beta 
First create the cube with center at the orgin 

call create(surface,Lorentz_surf,beta,gamma) ! create cube 

Rotate cube so that face 6 is in beta direction, and place it at 
initial position pos_new position of cube center 

call rotate(Lorentz_surf,v,beta) !Lorentz surface 
call rotate(surface,v,beta) ! rotate uncontracted cube 

Next: point cube in beta direc. and translate to iposO 

c 

c 

c 

c 
c 
c 

c 

c 
c 
c 
c 

c 
c 
c 

c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 

do isur = 1,6 save newly created surfaces 
do ipnt = 1,16 ! 16 points/side of cube 
do ix = 1,3 ! x, y z 

surface_orig(isur,ipnt,ix) surface(isur,ipnt,ix) 
Lorentz_surf_orig(isur,ipnt,ix) = Lorentz_surf(isur,ipnt,ix) 

enddo 
enddo 

enddo 

endif 

time = it 
do i = 1,3 

it = 0 surfaces done 

make it real 

pos_new(i) = pos_old(i) + v(i)*time 
! for visible motion on screen 

pos-8un(i) = pos_new(i) 
enddo 

! pass position of cube center 

Move surface to next position Dist = vel*time 

do isur = 1,6 

do ipnt = 1,16 
do ix = 1,3 

new position of undistorted but Contracted 
surface 

Lorentz_surf(isur,ipnt,ix) = Lorentz_surCorig(isur,ipnt,ix) 
+ pos_new(ix) ! move em out 

surface(isur,ipnt,ix) = surface_orig(isur,ipnt,ix) ! rawhide! 
enddo 

enddo 
enddo 

Find the pOS1llOn vectors of points on the surface relative 
to the observer - store them in r_surf. 

call calc_r(Lorentz_surf,r _surf,beta,eye) 

Calculate axis of rotation for each point on the surface. 

call axis_oCrot(r_surf, v ,beta,rotme) 

Find nearest point to observers's eye and keeps track of it 
nearest is the point on cube through which overall rotation will 
be done, ie rotation will be done about axis in rotme direction 
and point of rotation at nearest! 

call nearescpt(r_surf,nearest,eye,eye_mag) ! find nearest 
! point on surface to the observer 

Calculate the photosurface - store results in ph_surface 
Calculate elevation angles at retarded position - store 
values in sigh_tot. 

call find_sigh_total(r_surf,ph_surface,sigh_tot,r_reChat, 
1 nearest,eye,v,beta) 

Finally do the distortion on the original surface 
relative rotates each point on the cube as if it was a 
microscopic cube. 

call relative(surface,nearest,sigh_tot,r_surf,rotme, 
1 rJet_hat,eye, v, beta,pos_new ,angle) 

Relativistic rotation based upon elevation angle of the 
retarded position 

do isur = 1,6 new position of distorted surface 
do ipnt = 1,16 
do i = 1,3 

surface(isur,ipnt,i) 

enddo 
enddo 

enddo 

surface(isur ,ipnt,i) 
+ pos_new(i) ! move em out 

Now finaUy,finally calculate Doppler shifted color 
and map values into Dore (software color map) which is: 
hue = 0.25 is green, hue = 0.50 is red, hue = 0.0 is blue 
visible wavelengths: 
A.B(blue) = 390 nm, A.G(green) = 500nm, A.R(red) = 640 nm 
Doppler: A. = A.oy(l-Ikos'¥) , let hue = In(A./A.B) 
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c 

c 
c 

c 
c 
c 
c 
c 
c 

c 
c 
c 
c 

c 
c 
c 

c 

c 

c 
c 
c 

shift = gamma*(I.O-angle) 
shift = log(shift) 
hue = hueO + shift 
if(hue.le.O.O) hue = 0.0 
if(hue.gt.0.5) hue = 0.5 

keep cube in visible color range 
limit hue between 0.0 and 0.5 

return 
end 

to graphics program 

subroutine create(surface,Lorentz_surf,beta,gamma) 

Given beta and assume center of cube is at (0,0,0) find all the 
surface points ( six surfaces 16 points on each ) surface 
Surfacesl-4 are Lorentz contracted, beta is normal to surface 6. 
beta is along the x direction. y direction is vertical 

real surface(6,16,3) pts on surface of cube 
real Lorentz_surf(6,16,3) array of Lorentz contracted pts 
real x,y,z,xc , points on surfaces 
real IiCside,side,contside,c,gamma,alpha 

, start with cube at origin 
and assume that v points along z axis .. Then rotate cube so 
that its contracted face is parallel to v 

iii_side = 12.0 
side = 3.0*IiCside 
contside = side*gamma 

length of side of cube 
for even spacing along each side 
Lorentz contracted side 

Create all points on the surface if beta is along x 

do is = 1,4 
ipnt = 0 

surfaces parallel to beta 
init counter 

do ix = 1,4 
Y = float(ix-I)*IiI_side 

do iy = 1,4 

, 4 perp surfaces 
-0.5*side 

ipnt = ipnt + 1 
if(mod(is,2).eq.0)then 

, step to 16 for each is 
, face 2 and 4 or bot and top 
, at +/- y = side!2 

z = float(iy-1)*liCside - O.5*side 
xc = (float(is)-3.0)*0.50*gamma*side , contracted bot 

, surface is # 2 
x = (float(is)-3.0)*0.50*side , bot surface is=2 

elseif(mod(is,2).eq.l}then , face 1,3 is=l,3 
z = (float(is!2) -O.5)*side , is =1 get -L!2,is=4 get L!2 
xc = float(iy-I)*gamma*liI_side - 0.5*contside 
x = float(iy-I )*IiCside - 0.5*side 

endif 
surface(is,ipnt,l) = x 
surface(is,ipnt,2) = y 
surface(is,ipnt,3) = z 
Lorentz_surf(is,ipnt,l) = xc 

do i = 2,3 , contraction is along x only!! 
Lorentz_surf(is,ipnt,i) surface(is,ipnt,i) 

enddo 
enddo 

enddo 
, iy 
, iz 

enddo , is = 1,4 

Now faces perpendicular to beta 

do is = 5,6 , furthest (5) and closest to beta (6) 
y = side*(float(is)-5.0) - 0.50*side 

ipnt = 0 
do iz = 1,4 
z = float(iz-1)*liCside - 0.5*side 

do iy = 1,4 
ipnt = ipnt + 1 
x = float(iy-1)*IiCside - O.S*side 
xc = float(iy-1)*liCside*gamma - 0.5*contside 
surface(is,ipnt,l) = x 
surface(is,ipnt,2) = y 
surface(is,ipnt,3) = z 
Lorentz_surf(is,ipnt,l) = xc 

do i = 2,3 , contraction is along x only!! 
Lorentz_surf(is,ipnt,i) = surface(is,ipnt,i) 

enddo 
caddo 

enddo 
enddo , is 
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c 

c 
c 
c 
c 
c 

c 

c 
c 
c 

c 

c 

c 

c 

c 
c 
c 
c 
c 

c 

return 
end 

subroutine axis_oCrot(r_surf, v ,beta,rotme) 

Given the particle velocity and vector from each point on 
its surface to eyeO find rotation axis 
This is done using the vector cross product vXr_surf 

real csurf(6,16,4) 
real v(3) 
real rotme(6,16,3) 

do is = 1,6 

points on surface 
cube velocity 
rotation axis for each point 

six surfaces 
do ipnt = 1,16 

rotme(is,ipnt,l} 
rotme(is,ipnt,2) 
rotme(is,ipnt,3 ) 

, 16 pnts on each 
v(3)*r_surf(is,ipnt,2)-v(2)*r_surf(is,ipnt,3) 
v( I) *csurf( is,ipnt,3)-v(3 )*r _surf( is,ipnt,l) 
v(2)*Csurf(is,ipnt,l )-v( I )*r_surf(is,ipnt,2) 

enddo 
enddo 
return 
end 

subroutine nearescpt(r_surf,nearest,eye,eye_mag) 

Finds nearest point to observers's eye and keeps track of it 

real r_surf(6,16,4) 
real nearest(4) 
real eye(3),eye_mag 
real lorentz_surf( 6,16,3) 
real a,bmag,delta_r(3) 
real magn,magna 
real saveme(2,16) 
integer nearmag 

magna = r_surf(I,l,4) 
do is = 1,6 

scratch array 
returned position and magnitude 

used in finding nearest 
scratch variables 
scratch array 
number of identical nearest pts 

do ipnt = 1,16 
if(magna.gt.r_surf(is,ipnt,4»then 
magna = Csurf(is,ipnt,4) 

endif 
enddo 

enddo 
nearmag = 0 
do is = 1,6 
do ipnt = 1,16 

if(magna.eq.csurf(is,ipnt,4 »then 
Allow for possibility of more than one nearest point' 

nearmag = nearmag + 1 
saveme(l,nearmag) = is 
saveme(2,nearrnag) = ipnt 

endif 
enddo 

enddo 

do i = 1,5 initialize 
nearest(i) = 0.0 

enddo 
Calculate average nearest point 
do j = l,nearmag 
do i = 1,4 

nearest(i) = Csurf(saveme(l,j),saveme(2,j),i)+nearest(i) 
enddo 

enddo 
do i = 1,4 

nearest(i) = nearest(i)!float(nearmag) 
end do 
Calculate actual nearest point starting with average nearest 

point as an estimate 
The following loop could be repeated to improve accuracy - but 

one pass gives an estimate adequate for most purposes. 

do is=l,6 loop over surfaces 
do ipnt = 1,16 16 points per surface 

c Find projection of each vector from 'nearest' to a point on surface 
c (delta_r) and test if it is negative - if yes make new 'nearest' 
c which is perpendicular to deIta_r 
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c 
a=O. 

doi=l,3 
delta_r{i) = r_surf(is,ipntJ) - nearest(i) 

a = delta_r{i)*nearest(i) + a 
enddo 

if «a.It.O.O).and.(a .It. -0.1» then 
c Compute the square of the magnitude of delta_r 

c 

c 

bmag = O. 
do i=I,3 

bmag=delta_r(i)*delta_r(i) + bmag 
enddo 

compute new nearest 
do i=I,3 

nearest(i)=nearest(i)-a *delta_r(i)!bmag 
enddo 

endif 
enddo 

enddo 

magn = 0.0 
do i=I,3 

magn = nearest(i)*nearest(i) + magn 
enddo 
magn = sqrt(magn) 
nearest( 4 )=magn magnitude of nearest vector 

100 return 

c 
c 
c 
c 
c 

c 

c 

end 

subroutine rotate(surface, v ,beta) 

Given cube at origin. Move to position(3) and then 
rotate it to point along the beta direction 
returns rotated array in surface 

real beta, v(3) 
real surface(6,16,3) 
real theta 
real little 
real Al,Bl,Cl 
real VIV,L 
real xl,x2,x3 
real yl,y2,y3 
real zl,z2,z3 
real sinI,cosI,sinJ,cosJ 
real vector(3) 

little = 1.0e-6 

vIc, velocity vector of cube 
original/rotated array 

blowup protection 
vector components of curl 
in transform matricies 
temporary x posItion 
temporary y position 
temporary z position 
angles for rotation about VXrip 
! vector position of each pt on cube 

! 10 prevent blowup 

c Determine axis of rotation. 
c 

c 

c 

c 
c 
c 

c 

c 

c 
c 
c 

Al = O. 
Bl = v(3)/(beta + little) 
Cl = - v(2)/(beta + little) 

VIV = (BI*BI + CI·CI) 
L = sqrt(VIV + Al*AI) 
VIV = sqrt(VIV) 
cosI = CI/(VIV + little) 
sinI = BI/(VIV + little) 
cosJ = VIV/(L + little) 
sinJ = AI/(L + little) 

components of rotation axis 

if«Cl.eq.O.).and.(Bl.eq.O.» gOlo 100 
Rotation angle is found by taking dot product between y-axis 
and v. 

theta = acos(v(I)/(beta + little» 

do isur = 1,6 
do ipnt = 1,16 
do iu = 1,3 

vector(iu) surface(isur,ipnt,iu) 
enddo 

xl = vector(l) 
yl = cosI*vector(2)-sinI*vector(3) 
zl = cosI*vector(3)+sinI*vector(2) 

now rotate cube about y so that z axis corresponds to axis of 
rotation 

c 

c 
c 
c 

c 
c 
c 

c 

c 
c 
c 

c 

c 

x2 = cosJ*xl-sinJ*zl 
y2 = yl 
z2 = cosJ*zl +sinJ*x I 

now DO the relativistic rotation (about new z) 

x3 = x2*cos(theta) + y2*sin(theta) 
y3 = y2*cos(theta) - x2*sin(theta) 

z3=z2 

now do inverse transforms 

x2 = cosJ*x3+sinJ*z3 
y2 = y3 
z2 = cosJ*z3-sinJ*x3 

inverse rot about y 

xl = x2 inverse rot about x 
yl = cosI*y2+sinI*z2 
zl = cosI*z2-sinI*y2 

Now translate cube back to where it was at the outset 

surface(isur,ipnt,l) = xl 
surface(isur,ipnt,2) = yl 
surface(isur,ipnt,3) = zl 

enddo 
enddo 

! ipnt over points 
! isur 6 surfaces 

100 return 

c 

c 
c 
c 
c 
c 
c 

end 

subroutine calc_r(Lor_surf,r_surf,beta,eye) 

Calculates the angle of rotation 
for each point on surface according to apparant relativistic 
rotation. Taylor Introductory Mechanics pg 357 
These are put into an array (sigh(6,16» to be used later 

real beta 
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c 

c 

c 

real eye(3) posillon of observer's eye 
real Locsurf(6,16,3) points on surface of rotated cube 
real little overflow prevention 
real r_surf(6,16,4) ! for calculations (rpoint,rmag) 
real rpoint(3 ),mag_rpoint 

if(beta.eq.O)goto 100 
little = 1.0e-6 

do is = 1,6 
do ipnt = 1,16 

bailout no need to work 
divide protect 

over all 6 surfaces 
! 16 points/surface 

c Find the spatial location of points on the surface 
c as measured from the observer's position. 
c 

c 
c 
c 

rnag_rpoint = 0.0 ! initialize 
do i = 1,3 

rpoint(i) = LoCsurf(is,ipnt,i) - eye(i) 
mag.,rpoint = mag_rpoint + rpoint(i)**2 

enddo 
mag_rpoint = sqrt(mag_rpoint) 

Calculate angle of elevation for this x,y,z triplet 

do i = 1,3 
r_surf(is,ipnt,i) = rpoint(i) 

enddo 
Csurf(is,ipnt,4) = magJPoint 

enddo 
enddo 

save for later 

! ipnt 
! is 

100 return 

c 

c 

c 
c 
c 

c 

c 

end 

subroutine 
I 

find_sigh_total(r_surf,ph_surf,sigh_tot,r_re,-hat, 
nearest, eye, v ,beta) 

real r.:,.surf(6,16,4) store scratch rpoint,magr,sigh 
real ph_surf(6,16,3) light surface - position of 

retarded emission points 
real cre,-hat( 6,16,3) unit vector along r-retarded 
real beta,beta2,v(3),eye(3) 
real rmag magnitude of rpointO 
real nearest(4) nearest point on cube to eye 
real sigh_tot(6,16) total rotation angle 
real c,d,little 
real al,bl,cl,dl ! for calculating rret 
real r_dot_beta,b2rn,rnmag,rret 
real vt,ret_pos(3 ),cos_sigh 

calculate angle beta makes with x-z plane 

little = 1.0e-6 
if(beta.eq.O)goto 100 
beta2 = beta*beta 
rnmag = nearest(4) 
b2rn = beta2*rnmag 

do is = 1,6 
do ipnt = 1,16 

rmag = r_surf(is,ipnt,4) 

di vide protect 
bailout no need to work 

over a\l 6 surfaces 
! 16 points/surface 

c Calculate the position of the points such that 
c emitted rays reach the observer simultaneous 
c with a ray from the nearest point. 
c 

r_do'-beta = 0.0 
do i = 1,3 

Cdo'-beta = r_surf(is,ipnt,i)*v(i) + r_dot_beta 
enddo 
al = 1. - beta2 
bl = 2*(r_do,-beta + b2rn) 
cl = -rmag*rmag - 2.*cdoLbeta*rnmag-b2rn*rnmag 

dl = bl *bl - 4.*al *c1 
rret = (-bl + sqrt(dl)/(2.*al + little) 
vt = rret-rnmag 

cos_sigh = 0.0 
do i = 1,3 

TeLPos(i) = T_surf(is,ipnt,i) -vt*v(i) 
cre,-hat(is,ipnt,i) = ret_pos(i)/(rret + little) 
ph_surf(is,ipnt,i) = eye(i) + re,-pos(i) 
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c 
c 
c 

c 

c 

c 
c 
c 
c 
c 
c 
c 
c 

c 

c 
c 
c 

100 

Calculate the angle of elevation of the retarted position. 

cos_sigh = - ret,JlOs(i)*v(i) + cos_sigh 
enddo 
cos_sigh = cos_sigh/(rret*beta + little) 

sigh_tot(is,ipnt) acos(cos_sigh) 

enddo ! ipnt 
enddo ! is 

return 
end 

subroutine 
I 

relative(surface,nearest,sigh_tot,r_surf,rotme, 
r_reLhat,eye, v ,beta,pos_new ,angle) 

Rotate each point on surface according to apparant relativistic 
rotation. Taylor + plane wave correction 
With sigh_tot the total rotation angle move cube so that axis 
through nearest point is z axis and rotate each point by sigh_tot 
about this. rotate pointson the uncontracted cube. Points on the 
contracted cube were used to find the rotation angles 

real r_surf(6,16,4) store scratch rpoint,magr,sigh 
real beta,v(3),beta2,gamma v/c,velocity, beta*beta 
real surface(6,16,3) points on surface of rotated cube 
real nearest(4) nearest point on cube to eye 
real sigh_tot(6,16) total rotation angle 
real rotme( 6,16,3) rotation axis 
real r_re,-hat(6,16,3 ) unit vector along r-retarded 
real little small number 
real eye(3 ),pos_new(3) dist eye to (0,0,0) and new pos 
real ctr_to_nearest(3 ) vector for moving cube b/4 rot 
real ctn_unc(3) uncontracted ctr_to_nearest 
real proj(3),pro projection along beta 
real AI,BI,CI vector components of curl 
real VIV,L in transform matricies 
real theta,xx,angle cos(total angle of elevation) 
real ctn_dotv cube center dot vO 
real cos_doppler cosine of doppler angle 
real sign,signdop sign's of angles 
real sinl,cosl,sin] ,cos] angles for rotation about VXrip 
real vector(3) vector pos of each pt on cube 
real r_doLrhat dot product of rand cret_hat 
real no_points no points on cube 

if(beta.eq.O.O)goto 100 no action dont bother 
little = 1.0e-6 
no_points = 16.0*6.0 

beta2 = beta *beta 
gamma = 1./(sqrt(1.-beta2» 
ctD_dotv = O. ! used to undo a Lorentz contract 

do i = 1,3 
ctr_to_nearest(i) nearest(i) - pos_new(i) + eye(i) 
ctD_dotv = ctr_to_nearest(i)*v(i) + ctn_dotv 

enddo 
ctn_dotv = ctn_dotv*(gamma - 1.0)/beta2 

Uncontract center-to-nearest point on cube vector 

do i = 1,3 
ctn_unc(i) = ctr_to_nearest(i) + ctn_dotv*v(i) 

enddo 
c Rotate each vector on the surface around rolme by angle sigh_tot 

c 

do is = 1,6 
do ipnt = 1,16 

A I = rotrne(is,ipnt,l) 
BI = rotme(is,ipnt,2) 
CI = rotme(is,ipnt,3) 

VIV = (BI *BI + CI *CI) 
L = sqrt(VIV + Al *Al) 
VIV = sqrt(VIV) 
cosl = CI/(VIV + little) 
sinl = B l/(V I V + little) 
cosJ = V I V /(L + little) 
sin] = AI/(L + little) 

c Calculate angle of elevation for this x,y,z triplet 
c For Doppler shift evaluation 
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c 

c 
c 
c 
c 

c 
c 
c 
c 
c 

c 
c 

c 
c 
c 
c 

c 

cos_doppler = 0.0 
do i = 1,3 

cos_doppler = cos_doppler + r_surf(is,ipnt,i)*v(i) 
enddo 

cos_doppler = cos_doppler/(csurf(is,ipnt,4) + lillie) 
angle = angle + cos_doppler ! ave angle for 

Now do relativistic rotation 

sigh = sigh_tot(is,ipnt) 
cos_sigh = cos(sigh) 

! Doppler shift 

xx = (cos_sigh - beta)/(l. - beta*cos_sigh + little) 
if(abs(xx).gt.l.) xx = l. 
theta = acos(xx) - sigh 

Before rotation about rotme we must 
Translate cube back so that it will rotate about nearestO 
Recalculate Lorentz contraction 
Uncontract component of ctr_to_nearest along velocity vector 

do i = 1,3 
Vector points from a point on the surface nearest the 
observer to each labled point on the surface 

vector(i) = surface(is,ipnt,i) - ctn_unc(i) 
enddo 

now rotate cube (about x) so that new axis of rotation 
is in the x-z plane 

xl = vector(l) 
yl = cosl*veclor(2)-sin'*vector(3) 
z I = cosI*vector(3)+sin'*vector(2) 

c 
c 
c 

c 
c 
c 

c 

c 
c 
c 
c 

c 
c 

c 

now DO the relativistic rotation (about new z) 

x3 = x2*cos(theta) + y2*sin(theta) 
y3 = y2*cos(lheta) - x2*sin(thela) 

z3=z2 

now do inverse transforms 

x2 = cosJ*x3+sinJ*z3 
y2 = y3 
z2 = cosJ*z3-sinJ*x3 

inverse rot about y 

xl = x2 inverse rot about x 
yl = cosI*y2+sinI*z2 
zl = cosI*z2-sinI*y2 

Correct rotated surface so that each point lies along direction 
of corresponding point on photosurface. 

cdo,-rhat 
r_do,-rhat 
1 

(nearesl(l) + xl)*r_re'-hat(is,ipnt,l) 
(nearest(2) + yl)*r_ret_hat(is,ipnt,2) 

+ r_dot_rhat 

xl 
yl 
zl 

(nearest(3) + zl)*r_re,-hat(is,ipnt,3) 
+ r_do,-rhat 

cdot3hat*r_ret_hal(is,ipnt,1 ) 
cdot_rhat*r_re'-hat(is,ipnt,2) 
r_do,-rhat*r_re'-hat(is,ipnt,3) 

nearest(l) 
nearest(2) 
nearest(3) 

Now translate cube back 10 where it was at the outset 
surface(is,ipnt,l) = xl + clr_to_nearest(l) 
surface(is,ipnt,2) = yl + clr_lo_nearest(2) 
surface(is,ipnt,3) = zt + ctr_lo_nearest(3) 

c rOlate cube about y so that z axis corresponds to axis of rOlalion enddo 
enddo 

! ipnt 
! is c 

x2 = cosJ*xl-sinJ*zl 
y2 = yl 
z2 = cosJ*zl +sinJ*xl 
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